Finest Quality Instruments for Surgeons

gSource thanks the following individuals for their contributions in the creation of this catalog:

Ben Alpert, Susan Dabee, Lou Ann Fucarino, Ryan Marsini, Mican Meneses, Zoey Ohanessian, Elizabeth Ostrow, Patrice Schmitz, Kevin Sullivan

Linda Bernadic, Peter Bernadic - Linda \& Peter Photography, West Milford, NJ
Bob Carr - Allied Printing Services, Inc., Manchester, CT
Patricia Camara

An ARCH Medical Solutions Company

gSource: Finest Quality Instruments for Surgeons
Copyright © 2017 by gSource, LLC
All rights reserved.
Printed in the United States of America.
No part of this catalog may be used or reproduced in any manner without written permission.
For more information contact:
gSource, LLC
19 Bland Street
Emerson, NJ 07630
USA
P (800) 978-1119
(201) 599-2277

F (201) 599-3306
E email@gSource.com
www.gSource.com

About the gSource Catalog

The gSource catalog is arranged in order by instrument family. The first two digits of the gSource part number correspond to a general instrument group. Each page is marked with a general instrument group \# followed by the page \#.

This 2017 edition includes over 4,100 specially selected instruments with many primarily used in orthopedic and spinal procedures.

More than 100 instruments in the catalog are part of a collection of modified or improved versions of standard instruments referred to as the gLine. These instruments were created based on feedback received from surgeons and other healthcare professionals. The letter " g " in front of the instrument description identifies an item as a gLine instrument.

Please inquire about the availability of any instrument not shown in this catalog. For a quick answer on availability of other patterns not in the gSource catalog, refer to our website. You can view new instruments and use the cross reference feature to help you seach for the gSource equivalent of a brand-name part number. You can also email or fax us a copy of the instrument picture and description or instrument brand-name part number.

Instrument making is still a fine art done by master craftsmen in our German, Polish and U.S. facilities. As such, slight variations in pattern, overall length and style may occur. Every effort has been made to represent the instruments in this catalog with accurate pictures and detailed tip illustrations.

Ordering gSource Instruments

Healthcare Facilities

gSource is represented by a select group of distributors and representatives located worldwide. Contact gSource Customer Service for the authorized distributor or representative in your area.

Medical Device Companies (OEM)

Contact gSource Customer Service directly.

```
gSource, LLC
19 Bland Street
Emerson, NJ 07630
USA
P (800) 978-1119
    (201) 599-2277
F (201) 599-3306
E email@gSource.com
    www.gSource.com

diagnostic \& probes ..... 11
scalpel handles \& knives ..... 12
scissors ..... 13-14
bandage \& stitch scissors ..... 15
super-cut scissors ..... 16
tissue forceps ..... 17
splinter forceps ..... 18
dressing forceps ..... 19
sponge, tubing \& towel forceps ..... 20
needle holders ..... 21
hemostatic forceps ..... 22
clip applying forceps ..... 23
micro needle holders ..... 24
skin and nerve hooks ..... 25
ear, nose and throat ..... 26
eye ..... 27
ob/gyn ..... 29
arthroscopy ..... 30
micro dissection ..... 33
hand-held retractors ..... 34-37
self-retaining retractors ..... 38-40
elevators ..... 42-43
awls ..... 44
bone hooks ..... 45
bone holding ..... 46-47
cartilage ..... 49
dermal curettes ..... 50
bone curettes ..... 51
osteotomes ..... 52-53
chisels ..... 54
gouges ..... 56
mallets ..... 59
tamps ..... 60
bone files \& rasps ..... 61-62
bone cutters ..... 63
rib shears ..... 64
trephines \& bone saws ..... 65
bone rongeurs ..... 66
spinal IVD rongeurs \& graspers ..... 67-68
spinal punches ..... 69-72
cast removal ..... 73
measuring ..... 74
suction tubes ..... 75-76
nail nippers \& splitters ..... 77
K-wires, Steinmann pins, cerclage wire ..... 78-79
pliers ..... 81
wire and pin management ..... 82
wire, pin, plate \& rod cutters ..... 83
bone mill ..... 84
fracture management ..... 86-87
containers, racks, stringers, brushes ..... 98-99
conversion charts \& scales ..... 100
instrument care \& cleaning ..... 100
instrument sets ..... 101
alphabetical index ..... 110
numeric index ..... 120

\section*{gSource}
gSource is committed to putting the finest instruments into the hands of surgeons and their teams.

Not all instruments are created equal. Adequate for the job is, in reality, inadequate. A better instrument reduces distractions and facilitates surgical procedures. A better instrument helps a surgeon perform at his/her best. A better instrument leads to better results. gSource provides better instruments.

\section*{gSource Attributes}

Whether crafted from German surgical stainless steel, or machined from U.S. surgical stainless steel, our instruments are recognized by their finely finished surface. They are designed to perform with precise surgical function and are also conceived to be affordable. It is this combination that distinguishes the gSource brand.

\section*{Orthopedic and Spinal Focus}

Founded in 1999, gSource is more than a source for quality instrumentation. gSource is an advocate for the orthopedic and spinal community. We can be relied upon to provide superior instrumentation and do so in a time-critical fashion.

\section*{Service First}

Your inquiries will be answered quickly and accurately by knowledgeable professionals. We are committed to being a valuable business partner and to always provide a real return on investment.

\section*{Custom Instrumentation}
gSource will create entirely new instruments in a timely and economical manner. For an accurate quotation and delivery schedule, send us a sample, sketch or drawing.

\section*{Trusted Supplier to World Leaders}

Many world leaders and innovators in orthopedics and spine have found in gSource a trusted and reliable partner. Contact us the next time you require an off-the-shelf or custom instrument.

\section*{Guarantee}

All standard instruments are guaranteed for life against manufacturing defects of material and workmanship.
Any instrument proving to be defective will be replaced or the purchase price refunded.
1. Tungsten carbide inserts are guaranteed for three years. Replaceable parts, other than springs, are guaranteed for one year. Replaceable springs are guaranteed for life against manufacturing defects of material and workmanship.
2. This guarantee is void if instruments are altered or not maintained or repaired properly or if they are not used for their intended surgical purpose.
3. Any unused instrument may be returned for full credit within 90 days of invoice date.

\section*{gSource Advantages}
- Realistic price
- Verified quality
- On-time delivery
- Skilled German craftsmanship
- Precise U.S. machining
- Orthopedic and spinal focus
- Product development support
- CAD support
- Custom labeling, packaging and marking
- Unique and standard instrument patterns
- Large selection and inventory
- Forgings inventory
- Customer inventory management
- Instrument sharpening and repair
- Superior personal customer service
- ISO 13485:2003 Certified
- Full satisfaction guarantee

gSource, LLC Emerson, NJ USA
Founded 1999


\section*{01/4 - introduction to gSource}


An ARCH Medical Solutions Company

\section*{gSource Verified Quality}

Every gSource instrument must pass detailed Quality Assurance (QA) tests before it can be sold.

Instruments are inspected for:
- Critical Dimensions
- Function
- Pattern Consistency
- Workmanship
- Material

We perform the following QA tests to ensure that every instrument we sell will perform its function during critical surgical procedures.

Surface inspection
All instruments are visually inspected for defects in material and surface finish. They must have a flawless satin finish and be free of excess lubricants and foreign substances.

Dimensions verified
Critical dimensions are measured with calipers, micrometers, or other specialty gauges and compared to technical drawings or gSource catalog descriptions. To ensure pattern consistency selected instruments are compared to inspection samples.

\section*{gSource Quality Policy}

We ensure that gSource products consistently meet relevant and applicable requirements and specifications and we strive to provide outstanding service to our external and internal customers.

Top management ensures its commitment to comply with relevant and applicable requirements and to maintain the effectiveness of the gSource Quality Management System.


ISO 13485:2003 Certified FS 589741 FDA Registered

Our gS logo is a symbol for Verified Quality. This mark is proof of a lifetime guarantee.

\section*{gSource Quality Testing}

In addition to general inspections, function tests are used to verify instrument quality.

\section*{Scissors}

Cutting tests are performed on testing material. Scissors must not snag or bind when cutting appropriate layers of material. The heavier the scissors, the more layers of material they must cut. Blades must close smoothly without hesitation. Visual inspection is performed for burrs, especially on the cutting edge. Screw lock must be secure and a slight amount of hinge play should exist when opened.

\section*{Forceps}

Closed jaws are checked against a light source to ensure that no substantial amount of light passes through. Jaws are clamped on plastic testing material. The impression should be clean and consistent. Teeth must mesh together closely. Jaws must be properly aligned. Ratchets must engage crisply and smoothly. While engaged at the first ratchet tooth, instruments should not open when tapped lightly against the edge of a table.

\section*{Needle Holders}

Jaws must close tightly so that little or no light shines through the front \(2 / 3\) of closed jaws when tested against a light source. Jaws must hold suture material, and pass similar tests as outlined under forceps.

\section*{Retractors}

Ratchets are checked for proper holding action.
Tips are verified as either sharp, blunt or semi-sharp. Ratchet mechanisms must close smoothly. Holding power is tested to make sure ratchets remain engaged during use. Ratchet teeth must align properly.

Cutting Forceps
Cutting tests are performed with the appropriate test material. Forceps must cut cleanly with the front half of the jaws. Tips must close properly from the top to the middle of the jaws.

Pin and Wire Cutters
Cutting tests are performed according to the recommended maximum capacity of each instrument.

Only after an instrument has passed our QA inspection criteria will it be released to the market.

\section*{gSource Manufacturing}
gSource instruments are manufactured from stainless steel. Stainless steel, though not truly stainless, is a highly corrosion and rust-resistant material. The metal is extremely strong and durable and has the ability to form protective or "passivation" layers.

Stainless steel differs from carbon steel by the amount of chromium present. Unprotected carbon steel rusts readily when exposed to air and moisture. This iron oxide film (the rust) is active and accelerates corrosion by forming more iron oxide. Stainless steels contain sufficient chromium to form a passive film of chromium oxide, which prevents further surface corrosion and blocks corrosion from spreading into the metal's internal structure. Passivation only occurs if the proportion of chromium is high enough.

Most gSource surgical instruments are made from German stainless steel type 1.4021 - equivalent to American steel type 420. This steel is highly corrosion resistant and has excellent longevity when properly maintained. Steel type 1.4021 is composed primarily of iron. Other components are:
Carbon 0.17-0.25\%
Silicon \(\leq 1.0 \%\)
Manganese \(\leq 1.0 \%\)
Phosphorous \(\leq 0.045 \%\)
Sulphur \(\leq 0.043 \%\)
Chromium 12.0-14.0\%
During the manufacturing process every effort is made to ensure that the instruments are corrosion resistant. However, if not properly maintained, stainless steel can rust and stain, reducing the life of the instrument or rendering it useless. For more detailed information on instrument care, see Section 100 - Instrument Care \& Cleaning.

\section*{Heat Treatment}

Heat treating makes the instruments hard and enables them to withstand rigorous use. Stainless steel is brought to a very high temperature and then cooled until it has reached the proper hardness. Hardness is measured in units called Rockwell Hardness (HRc). A typical hardness range for needle holders is HRc 40-48. For scissors, the range is HRc 50-58.

Heat treating and steel selection are just two of the more than 80 steps required to produce surgical instruments to gSource standards. We monitor and verify the accuracy of our manufacturing process through frequent audits.

\title{
introduction to gSource - 01/7
}

\section*{Evaluation Samples}

Samples for evaluation are available from gSource. Evaluation samples can only be supplied against a valid purchase order number and are invoiced at the time of shipment on established payment terms. Undamaged, unused evaluation samples may be returned for full credit within 45 days.

\section*{Trial Use Samples}
gSource offers trial use samples for select instruments. Please contact gSource Customer Service to determine availability. gSource trial use samples may be used in surgery and are marked with "gSource Sample" and "Trial Use Only". gSource does not ship sterile instruments and sterilization is advised at your facility according to recommended parameters.
Trial use samples are supplied only against a valid purchase order number. Zero dollar purchase orders are not acceptable. Trial use samples are invoiced at the time of shipment at established cost with payment terms of net 60 days. Credit will be issued for the return of undamaged trial use samples within 60 days of invoice date. Trial use samples not returned to gSource within 60 days of invoice date will be payable in full. Customer may elect to purchase trial use samples. Trial use samples, used or unused, may be assessed at \(25 \%\) restocking and reconditioning fee charge based upon the invoice amount.

\section*{Returns}
gSource will accept instruments covered by the gSource guarantee. We cannot accept the following for credit or refund:
1. Instruments not in their original condition.
2. Instruments which have been used in surgery, unless defective. Used instruments must be sterilized prior to return and must be accompanied by a completed Certificate of Sterilization.
3. Instruments with an invoice date of more than 90 days.
4. Custom-made, custom-marked, special order or altered instruments.
5. K-Wires, Steinmann Pins, Cerclage Wire, Distraction Screws, Gigli Saw Blades.
At our discretion, a \(15 \%\) restocking fee of the total value returned may apply, unless return is due to gSource error, defective product or if product was received damaged. Should instruments require neutralization for custom etching, a charge of \(\$ 5.00\) USD per unit will be assessed.

\section*{Instructions for Returns to gSource}

A Return Authorization (RA\#) is required for all returns to gSource. Please contact gSource Customer Service via email or telephone to obtain an RA\# prior to your return.

The following information must be provided when requesting an RA\#:
1. gSource part number(s) and quantity being returned
2. Reason for return
3. gSource invoice number or pack slip \#

All returns to gSource must be accompanied by a completed Certificate of Sterilization (CofS). This is to comply with OSHA Standards (29CFR1910.1030) requiring all used instruments be sterilized prior to shipping. New instruments may be indicated on the CofS.

Please do not sterilize instruments that have not been used. A copy of our CofS will be provided to you at time of RA\# assignment should you require one. Please note that sign off on a CofS by a third party is not acceptable.

Once assigned an RA\#:
1. Package your returned instruments carefully and securely, using original gSource packaging and labeling where possible to securely protect against damage during transit.
2. Include a copy of the gSource invoice or pack slip, the Certificate of Sterilization and any other documentation needed.
3. Send your return to:

\section*{gSource}

Attn: Returns
19 Bland Street
Emerson, NJ 07630
The RA\# must be noted prominently on the package. gSource reserves the right, at our discretion, to refuse any package not properly marked.
4. Ship your return to gSource via prepaid shipping.

All returns are subject to inspection by gSource Quality. A credit memo will be issued once the samples have passed inspection.

\section*{01/8 - introduction to gSource}

\section*{Instrument Sharpening and Repair}
gSource offers sharpening, spring and screw replacement and refurbishing repair services to ensure quality performance during the entire life of your gSource instruments.

Our highly skilled in-house repair technicians will expertly sharpen and repair your gSource instruments, and other instrument brands, according to gSource Verified Quality standards. Our superior customer service teamed with our instrument repair technicians will ensure you receive an excellent repair experience. Visit www.gSource.com for more information about our sharpening and repair services.


\section*{Repair Warranty}

Instruments repaired by gSource repair technicians are guaranteed to be free from defects in material and workmanship for 90 days when used for their intended surgical purpose. Any repair that proves defective in workmanship or material within this 90 day period will either be repaired again or replaced, at the discretion of gSource, without charge. Instruments must be cleaned and sterilized prior to returning to gSource.

This warranty is void for gSource instruments serviced by any person or facility other than gSource. Warranty is not valid for gSource instruments that prove defective as a result of improper care and cleaning or misuse.

\section*{Instructions for Sending Repairs to gSource}
1. Review our Repair Price List.
2. Print out and complete our Order Form. Please be sure to complete your contact information and address for the return shipment. Refer to the Price List for Repair Codes to include on Order Form where noted. Include the quantity, part number and description of the instrument being returned where noted.
3. Sterilize instrument prior to shipment to gSource. All returns to gSource must be accompanied by a Certificate of Sterilization.
4. Enclose the completed order form and Certificate of Sterilization in the package with the sterilized instrument needing sharpening or repair and ship via prepaid shipping to: gSource Attn: Repair Dept. 19 Bland Street Emerson, NJ 07630

After sharpening and/or repair of your instrument is completed, you will receive an invoice for payment. Payment must be received prior to shipment of your repaired instrument. We accept VISA, MasterCard and AMEX credit card payments. When you receive your invoice, please contact gSource Customer Service with your credit card payment information. Our default ship method is UPS Ground unless an alternate method is specified.

An ARCH Medical Solutions Company

Oxidation of lead surface is a normal process.

Per DIN EN 285, autoclave temperatures should not exceed:

Dry Heat: \(356^{\circ} \mathrm{F}\left(180^{\circ} \mathrm{C}\right)\) 30 minutes

Steam: \(248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)\) 20 minutes

Avoid
chemical sterilization.
gS \(11.1900 \quad 14\) " Adult gS 11.1920 10" Child

Lead Hand with tabs


CPS = Cycles
Per Second

C-128 CPS frequency for neurological testing.

C-256 has
extra long 2 " handle to facilitate bone conduction
tests.
gS \(11.4128 \quad 8\) " C-128 gS \(11.425661 / 2^{\prime \prime} \mathrm{C}-256\)

Tuning Fork
aluminum
\(\qquad\)

gS 11.45126 1/2" C-512
Tuning Fork aluminum
C-512 CPS frequency for auditory and conduction testing.
\(\qquad\)


\section*{Lead Hand}

\(\qquad\)

gS \(11.711041 / \mathbf{2 "}^{\prime \prime}\)
gS \(11.71115^{\prime \prime}\)
gS 11.71125 1/2"
gS 11.71136 1/4"
gS \(11.71147^{\prime \prime}\)
gS 11.7115 8"
gS \(11.7116{ }^{10 "}\)
Probe with Eye
stainless steel
2 mm diameter probe end


An ARCH Medical Solutions Company


To check fracture and remove ingrown tissue.
gS \(11.952561 / 4\) "

\section*{Sharp Hook} grooved handle


\section*{11/4-diagnostic}

To test deep tendon reflexes.
gS \(11.56007^{\prime \prime}\) gS 11.5680 8"

\section*{Taylor Percussion Hammer}

TiN coated blade stays sharp longer.

Plier handle provides strong, secure grip for better control.
gS \(11.5360 \quad 61 / 2^{\prime \prime}\) gS 11.5362 blade only

Finger Ring Cutter plier handle

gS \(11.530061 / \mathbf{2}^{\prime \prime}\) gS 11.5340 blade only

Finger Ring Cutter hollow handle

\section*{did you know...?}

The Taylor Percussion Hammer, gS 11.5600 and gS 11.5680 shown on this page, is also known as the tomahawk reflex hammer. It was designed by Dr. John Madison Taylor, a pediatric neurologist, in 1888 while working at the Philadelphia Orthopedic Hospital. This instrument is used to test deep tendon reflexes as part of a neurological physical examination in order to detect abnormalities in the central or peripheral nervous system.

Dr. Taylor was born in 1855. He was a graduate of Princeton in 1876, and received his medical degree from the University of Pennsylvania in 1878. After serving as resident physician, he became assistant physician at Children's Hospital in Philadelphia. He established a large private practice in pediatrics and neurology in Philadelphia and also held academic positions, including appointments as professor of diseases of children at the Philadelphia Polyclinic. Dr. Taylor passed away in 1931.

WL = Working Length
gS 12.1605 \#3K 4"
gS 12.1604 \#3KL 5"
gS 12.1606 \#3KXL 6"
Scalpel Handle \#3K Beaver-style for blades 61 through 69

gS 12.1580 \#3 standard 5"
gS 12.1590 \#3S mm/cm scale 5"
gS 12.1610 \#3L long 8"
gS 12.1615 \#3LA long angled 8 1/2"
gS 12.1617 \#3XL extra long 12"

\section*{Scalpel Handle \#3}
for blades 9 through 17

gS \(12.1640 \quad 5 "\)
Scalpel Handle \#9 (7K) for blades 9 through 17

An ARCH Medical Solutions Company

\section*{12/2 - scalpel handles and knives}

Scalpel Handle \#1015/8 for blades 9 through 17 hollow handle
gS 12.1700 standard \(6 "\) gS 12.1701 angled \(6 "\)

Siegel Scalpel Handle for blades 9 through 17 knurled handle
gS \(12.162061 / \mathbf{2 " ~}^{\prime \prime}\)
Scalpel Handle \#7 for blades 9 through 17
gS 12.2780 standard \(6 "\) gS 12.2781 angled 5 3/4"

Scalpel Handle \#1017/8 for blades 9 through 17 knurled handle


gS 12.1600 \#4 standard 5 1/4"
gS 12.1601 \#4 mm/cm scale 5 1/4"
gS 12.1602 \#4L long 8 1/2"
gS 12.1603 \#4LA long angled 8 1/2"

\section*{Scalpel Handle \#4}
for blades 18 through 36


Scalpel Handle \#1015/9 for blades 18 through 36

\section*{12/4 - scalpel handles and knives}
1) Insert blade side up to align to guide.

3) Pull blade off handle.

Useful for safe and easy
removal of blades from all handle styles. Helps to protect hands against accidental cuts and punctures.
gS \(12.1000 \quad 21 / \mathbf{2 "}^{\prime \prime}\)

\section*{Blade Safe} surgical blade remover

Soft Corn Knife slightly curved oval blade

Useful for fistulotomy procedures.

\section*{did you know... ?}

Scalpel blade removers, such as gS 12.1000 shown on page \(12 / 4\), can also be used to put blades on the handle. Using a scalpel blade remover can help to reduce accidental lacerations and injuries, commonly caused when removing the blade with fingers or forceps.

The Centers for Disease Control and Prevention (CDC) estimates that about 385,000 sharps-related injuries occur annually among health care workers in hospitals. Approximately 4\% of injuries are associated with reusable scalpels.

Listed below are the "sharps" safety guidelines for healthcare professionals as found on the CDC website: www.cdc.gov

\section*{Be Prepared}
- Organize your work area with appropriate sharps disposal containers within reach
- Work in well-lit areas
- Receive training on how to use sharps safety devices
- Before handling sharps, assess any hazards-get help if needed

Be Aware
- Keep the exposed sharp in view
- Be aware of people around you
- Stop if you feel rushed or distracted
- Focus on your task
- Avoid hand-passing sharps and use verbal alerts when moving sharps
- Watch for sharps in linen, beds, on the floor, or in waste containers

Dispose of Sharps with Care
- Be responsible for the device you use
- Activate safety features after use
- Dispose of sharps in rigid sharps containers; do not overfill containers
- Keep fingers away from the opening of sharps containers

\section*{12/6 - scalpel handles and knives}

\section*{did you know... ?}

The most common scalpel handle shapes are:
1) Flat handles: Commonly used for both rounded and straight incisions. The design of these handles is best suited for straight long cuts and general surgery. These include:
\begin{tabular}{cccc} 
\#3 & \#4 & \#7 & \#9 \\
Page 12/1 & Page 12/3 & Page 12/2 & Page 12/1 \\
gS 12.1580 & gS 12.1600 & gS 12.1620 & gS 12.1640 \\
gS 12.1590 & gS 12.1601 & & \\
gS 12.1610 & gS 12.1602 & & \\
gS 12.1615 & gS 12.1603 & & \\
gS 12.1617 & & &
\end{tabular}
2) Rounded handles: Allow rotation between the finger and thumb. They are generally considered a better instrument for curved incisions. These include:

\section*{Beaver-style scalpel handle}

Page 12/1
gS 12.1604
gS 12.1605
gS 12.1606
This handle can only be used with Beaver-style blades (61-69).

\section*{Siegel scalpel handle}

Page 12/2
gS 12.1700
gS 12.1701
This handle accepts standard scalpel blades and in addition to having a rounded, knurled gripping surface, it has a smooth tapered tip that can also serve as a probe. Dr. Daniel Siegel's rounded design is ergonomic and allows the tips of the fingers to dictate the direction and depth of the incision.

\section*{Bayonet scalpel handle}
gS 12.1750 Page 12/3
gS 12.1760 Page 12/1
gS 12.1800 Page 12/3
The bayonet style handles are useful for achieving optimized visibility and access in surgical field, and for fine maneuvering and manipulation within field.

The most commonly used scalpel handle grips are:
1) Palmar grip: Usually used when making initial incisions or larger cuts. The index finger extends to the top rear of the blade and the thumb secures along the side of the handle. The second through fourth fingers hold the handle along the base of the thumb. It is commonly referred to as the "dinner knife" grip.
2) Pencil grip: Usually used when precise cuts with smaller blades are needed. The tips of the first and second fingers and the tip of the thumb hold the scalpel handle near the top rear of the blade while the handle rests on the fleshy base of the index finger and thumb. The handle should not rest too far along the index finger as it could cause an unstable grip and finger cramping.

TC＝Tungsten Carbide


4＂str


4 1／2＂ang
gS \(13.1640 \quad 3\) 1／2＂str
gS \(13.166031 / 2^{\prime \prime}\) cvd gS 13.1670 4＂str
gS 13.1671 4＂str left－handed gS 13.1672 4＂cvd gS \(13.1680 \quad 41 / 2^{\prime \prime}\) str gS \(13.172041 / 2^{\prime \prime}\) cvd gS \(13.172141 / 4\)＂cvd left－handed gS \(13.238041 / 2^{\prime \prime}\) angled gS \(13.184241 / 2^{\prime \prime}\) str TC gS \(13.184441 / 2\)＂cvd TC

Iris Scissors sharp points
\(\qquad\)
五
\(\mathrm{b} / \mathrm{b}=\) blunt／blunt
s／s＝sharp／sharp
gS 13.2384 str b／b
gS \(13.2385 \mathrm{cvd} \mathrm{b} / \mathrm{b}\)
gS \(13.2386 \mathrm{str} \mathrm{s} / \mathrm{s}\)
gS \(13.2390 \mathrm{cvd} \mathrm{s} / \mathrm{s}\)

\section*{Knapp Iris Scissors} 4＂

gS 13.2392 str gS 13.2393 cvd

Fine Scissors
4 1／2＂
round shank，sharp points


b/b = blunt/blunt
\(\mathrm{s} / \mathrm{b}=\) sharp/blunt
s/s = sharp/sharp
TC = Tungsten Carbide

Gradle Scissors sharp points

\(41 / 2^{\prime \prime}\)
gS \(13.260041 / 2^{\prime \prime}\) str gS \(13.264041 / 2^{\prime \prime}\) cvd gS 13.2642 4" str TC gS \(13.26444 "\) cvd TC

Strabismus Scissors blunt points

gS \(13.268041 / 4\) " str b/b
gS \(13.272041 / 4 "\) cvd b/b
gS \(13.274041 / 4\) " str s/s
gS \(13.276041 / 4 \mathrm{ckd} \mathrm{c} / \mathrm{s}\)
gS \(13.2770 \quad 51 / 2\) " str b/b
gS \(13.277251 / 2^{\prime \prime}\) cvd b/b
gS \(13.281641 / 2^{\prime \prime} \mathrm{cvd} \mathrm{s} / \mathrm{s}\) TC
gS \(13.283041 / 2^{\prime \prime}\) cvd b/b TC

\section*{Stevens Tenotomy}

\section*{Scissors}
fine blades
\begin{tabular}{ll} 
gS 13.6320 & \(\mathrm{str} \mathrm{s} / \mathrm{s}\) \\
gS 13.6340 & \(\mathrm{str} \mathrm{s} / \mathrm{b}\) \\
gS 13.6360 & \(\mathrm{str} \mathrm{b} / \mathrm{b}\) \\
gS 13.6380 & \(\mathrm{cvd} \mathrm{s} / \mathrm{s}\) \\
gS 13.6400 & \(\mathrm{cvd} \mathrm{s} / \mathrm{b}\) \\
gS 13.6420 & \(\mathrm{cvd} \mathrm{b} / \mathrm{b}\) \\
GS 13.6440 & ang s/s
\end{tabular}

Plastic Surgery Scissors 4 3/4"



Suture holes in blade align when closed．
gS 13.3011 cvd gS 13.3012 cvd fine

\section*{Littler Scissors}

4 3／4＂
with suture holes，blunt points

gS \(13.6600 \quad 5 " \mathrm{cvd}\)
Ragnell Scissors flat blades blunt points


gS \(13.7200 \quad 5 \mathrm{cc}\) cvd
Goldman－Fox Scissors serrated blade sharp points


\section*{13-14/4-scissors}
b/b = blunt/blunt \(\mathrm{s} / \mathrm{b}=\) sharp/blunt s/s = sharp/sharp
gS \(13.400141 / 2^{\prime \prime} \mathrm{s} / \mathrm{b}\) gS \(13.400241 / 2^{\prime \prime} \mathrm{s} / \mathrm{s}\)
gS \(13.400341 / 2^{\prime \prime} \mathrm{b} / \mathrm{b}\)
gS \(13.40085 \mathrm{sk} \mathrm{s} / \mathrm{b}\) left-handed
gS \(13.40095 " \mathrm{~b} / \mathrm{b}\) left-handed
gS 13.4011 5" s/b
gS 13.40125 sk s
gS 13.40135 F b/b
gS \(13.4018 \quad 51 / 2 \mathrm{l}\) s/b left-handed
gS \(13.402151 / 2 \mathrm{~s} / \mathrm{b}\)
gS \(13.402251 / 2^{\prime \prime} \mathrm{s} / \mathrm{s}\)
gS \(13.402351 / 2^{\prime \prime} \mathrm{b} / \mathrm{b}\)
gS \(13.403161 / 2^{\prime \prime} \mathrm{s} / \mathrm{b}\)
gS \(13.403261 / 2 \mathrm{~s} / \mathrm{s}\)
gS \(13.4033 \quad 61 / 2^{\prime \prime} \mathrm{b} / \mathrm{b}\)


\(\mathrm{s} / \mathrm{s}\)


\section*{Operating Scissors}
straight blades
gS \(13.400441 / 2^{\prime \prime} \mathrm{s} / \mathrm{b}\)
gS \(13.400541 / 2^{\prime \prime} \mathrm{s} / \mathrm{s}\)
gS \(13.400641 / 2^{\prime \prime} \mathrm{b} / \mathrm{b}\)
gS \(13.4014 \quad 5 \mathrm{~s}\) s/b
gS \(13.40155^{\prime \prime} \mathrm{s} / \mathrm{s}\)
gS \(13.4016 \quad 5 \mathrm{Lb}\) b/b
gS \(13.4024 \quad 51 / 2^{\prime \prime} \mathrm{s} / \mathrm{b}\)
gS \(13.4025 \quad 51 / 2^{\prime \prime} \mathrm{s} / \mathrm{s}\)
gS \(13.402651 / 2^{\prime \prime} \mathrm{b} / \mathrm{b}\)
gS 13.4028 5 1/2" s/b left-handed
gS \(13.403461 / 2 \mathrm{~s} / \mathrm{b}\) gS \(13.4035 \quad 61 / 2^{\prime \prime} \mathrm{s} / \mathrm{s}\) gS \(13.4036 \quad 61 / 2 " \mathrm{~b} / \mathrm{b}\)

s/b

\(\mathrm{s} / \mathrm{s}\)

b/b

Operating Scissors curved blades

TC = Tungsten Carbide
```

gS 13.5360 4 1/2"
gS 13.5430 5"
gS 13.5580 5 3/4"
gS 13.5581 5 3/4" left-handed
gS 13.5660 7"
gS 13.5661 7" left-handed
gS 13.5930 7" delicate
gS 13.5720 8"
gS 13.5760 9"
gS 13.5761 9" left-handed
gS 13.5820 10"
gS 13.5860 11"
gS 13.7436 5 3/4" TC delicate
gS 13.7438 7" TC
gS 13.7440 7" TC delicate
gS 13.7480 8" TC
gS 13.7505 9" TC
gS 13.7525 9" TC delicate

```

Metzenbaum Scissors
straight blunt points
```

gS 13.5380 4 1/2"
gS 13.5450 5"
gS 13.5620 5 3/4"
gS 13.5920 5 3/4" delicate
gS 13.5621 6" left-handed
gS 13.5700 7"
gS 13.5701 7" left-handed
gS 13.5940 7" delicate
gS 13.5740 8"
gS 13.5780 9"
gS 13.5781 9" left-handed
gS 13.5840 10"
gS 13.5880 11"
gS 13.7433 5 3/4" TC
gS 13.7439 7" TC
gS 13.7460 7" TC delicate
gS 13.7485 8" TC
gS 13.7520 9" TC
gS 13.7535 9" TC delicate
gS 13.7466 10" TC
gS 13.7545 11" TC

```


Metzenbaum Scissors
curved blunt points

\section*{13-14/6 - scissors}

TC = Tungsten Carbide
gS \(13.3560 \quad 51 / 2^{\prime \prime}\) str
gS \(13.3561 \quad 51 / 2 "\) str left-handed
gS \(13.358051 / 2^{\prime \prime}\) cvd
gS \(13.3581 \quad 51 / 2^{\prime \prime}\) cvd left-handed
gS 13.35856 6 str
gS 13.3590 6" cvd
gS 13.36006 3/4" str
gS 13.3601 \(63 / 4\) " str left-handed
gS \(13.362063 / 4\) " cvd
gS \(13.362163 / 4\) " cvd left-handed
gS 13.3920 9" str
gS 13.3940 9" cvd
gS \(13.3971 \quad 51 / 2^{\prime \prime}\) str TC
gS \(13.397251 / 2^{\prime \prime}\) cvd TC
gS \(13.397563 / 4\) " str TC
gS \(13.397663 / 4\) " cvd TC
gS 13.3977 9" str TC
gS 13.3978 9" cvd TC


\section*{Mayo Scissors}
blunt beveled blades

gS 13.4250 str
gS 13.4270 cvd
Mayo Noble Scissors 6 1/2"
blunt beveled blades


An ARCH Medical Solutions Company

gS \(13.4180 \quad 51 / 2^{\prime \prime}\) str gS \(13.418251 / 4\)＂cvd

Sistrunk Scissors blunt points，heavy pattern

gS \(13.4190 \quad 51 / 4 "\) str
Sistrunk Scissors
sharp points，heavy pattern

gS \(13.311451 / 2^{\prime \prime} \mathrm{cvd}\)

\section*{Joseph Scissors} sharp points

TC = Tungsten Carbide
gS 13.2780 6" str
gS 13.2782 6" cvd
gS 13.2800 7" str
gS 13.2802 7" cvd
Reynolds Scissors blunt points
gS 14.7125 6 3/4"
Knight Nasal Scissors angled on side blunt points

gS 13.7060 str
gS 13.7070 cvd
gS 13.7120 ang
gS 13.7140 str TC gS 13.7145 cvd TC

Kelly Scissors 6 1/4" sharp points


gS 13.3540 str
gS 13.3542 cvd
Gorney Scissors
8", blunt points one serrated blade

gS 13.4340 str gS 13.4360 cvd

Doyen Scissors 7"
blunt points


ャレ-\&L


gS 13.3965 str gS 13.3966 cvd

\section*{Mayo-Harrington Scissors 9"} blunt rounded blades
gS \(14.3000 \quad 13\) "
Bariatric Extra Long Mueller Rectal Scissors angled handle, blunt points

gS \(15.1680 \quad 31 / 2^{\prime \prime}\) gS \(15.1920{ }^{5 \prime}\)

Spencer Stitch Scissors delicate hooked blade
\(\qquad\)

gS \(15.1800 \quad 31 / \mathbf{2 "}^{\prime \prime}\)
Shortbent Stitch Scissors
delicate hooked blade

gS 15.2040 \(43 / 4\) "

\section*{Northbent Stitch}

Scissors
delicate hooked blade
gS \(15.1950 \quad 41 / 2^{\prime \prime}\)
Angled Stitch Scissors angled delicate hooked blade
\(\qquad\)
 -

\section*{15/2 - stitch scissors}
gS \(15.2200 \quad 51 / \mathbf{2 "}^{\prime \prime}\)
Littauer Stitch Scissors
delicate hooked blade

\section*{did you know... ?}

Stitch scissors are also known as suture scissors. The word suture comes from the Latin "sutura", a sewn seam. In Latin, the verb "suere" means to sew, stitch, or tack together. The word scissors is derived from the Latin word "cisorium" meaning cutting tool.

These scissors are an indispensable tool in the medical field. They provide hospitals, doctor's clinics and operating rooms with the proper instrument to cut and remove suture string. Sizes vary depending on what length of suture is being removed. They are specifically designed to remove sutures through the design of the tip.
gS \(15.6600 \quad 6 "\)
Ingrown Nail Splitting Scissors
one serrated blade


The basic tip design may be pointed or blunt ended. The blades are either hooked, curved or have a curved blunt blade to enable easy removal of sutures. The hook helps medical personnel easily lift the sutures to be cut.

Suture scissors are available in several sizes. The 3 1/2" suture scissors, gS 15.1680 and gS 15.1800, on page \(15 / 1\), are used when cutting and removing stitches in very small and tight places. The \(31 / 2^{\prime \prime}\) Spencer Stitch Scissors, gS 15.1680, is the most popular model.

An ARCH Medical Solutions Company


After the suture knot is tied, the slot opening on the suture cutter uses the suture as a guide to gently push aside tissue while descending down until the knot is reached.


The knot stops the suture cutter as it is thicker than the slot is wide. The offset blade is set to be approximately 2 mm above the knot and cuts the suture with precision and ease.


Helps to clip sutures at the correct level above the knot.

\section*{Suture Cutter}
flat and reversible
for CGS 3-0/7-0, silk 2-0/6-0 range

An ARCH Medical Solutions Company

\section*{15/4 - bandage scissors}

Most popular scissors for bandage and dressing removal.
gS \(15.768031 / 2\) "
gS \(15.780041 / 2^{\prime \prime}\)
gS \(15.7920 \quad 51 / 2\)
gS 15.7921 5 1/2" left-handed gS 15.80116 1/2" left-handed gS \(15.804071 / 4\) " gS \(15.804171 / 4\) " one serrated blade gS 15.80437 1/4" left-handed gS 15.8070 8"

Lister Bandage Scissors angled blade


Oversized finger ring helps relieve pressure on third metacarpal.
gS 15.8080 8" \(^{\prime \prime}\)
gS \(15.80828^{\prime \prime}\) one serrated blade

Lister Bandage Scissors
one large ring


Delicate blades and angled shank are ergonomically designed to cut finger and toe bandages.

Fine knob slides easily under bandages.

Keeps hands away from material being cut.
gS \(15.8920 \quad 51 / 2 "\)
Hi-Level Bandage Scissors (Knowles) one serrated blade angled


For removal of finger and toe bandages.
gS \(15.9040 \quad 51 / 2 "\)
Knowles Bandage Scissors
one serrated blade straight


gS \(15.916061 / \mathbf{2 " ~}^{\prime \prime}\)
Bandage Scissors one serrated blade angled, sharp points


For cutting tape and bandages.
gS 15.1600 8"
Esmarch Shears
heavy blades

one serrated blade heavy blades

\section*{15/6 - bandage scissors}

\section*{19}


For cloth, bandages, and light plaster.
gS 15.92995 1/2" black gS \(15.930071 / 2^{\prime \prime}\) black gS 15.93017 1/2" blue gS \(15.930271 / 2^{\prime \prime}\) green gS \(15.930371 / 2\) red

Utility Scissors
plastic handle, autoclavable one serrated blade

gS \(15.9200 \quad 7 \mathrm{ln}\) str
gS 15.9202 7" cvd
Moleskin Scissors
one serrated blade sharp/blunt points


For lightweight plaster casting material.

Angled blade keeps hands away from cutting material.
gS \(15.9340 \quad 71 / \mathbf{2 " ~}^{\prime \prime}\)
Hercules Scissors
one serrated blade heavy
gS \(15.9400 \quad 61 / 4 "\)

\section*{Scissor Forceps}
plier handle with springs sharp points \(\qquad\)

Notch next to hinge screw can be used to cut cerclage wire. (17 gauge/ø1.5mm max)
gS \(15.9360{ }^{8 \prime}\)
Utility Shears
one serrated blade locking clip


\section*{15/8 - bandage scissors}

\section*{did you know...?}

Lister bandage scissors, as shown on page 15/4, were invented by Dr. Joseph Lister, a British surgeon whose most significant achievement was his work on antiseptics, establishing the basis of modern sterile surgery.

Dr. Lister was born in 1827 and lived in a Quaker home in Upton, Essex county of England. He was the son of Joseph Jackson Lister, inventor of the compound microscope. He attended the University of London and graduated with a Bachelor of Medicine degree before entering the Royal College of Surgeons in London at the age of 26. In 1854, Dr. Lister became a surgeon assistant at the University of Edinburgh, Edinburgh Royal Infirmary in Scotland.

As professor of surgery at the University of Glasgow, Dr. Lister became aware of a paper published by the French chemist Louis Pasteur, suggesting three methods to eliminate the micro-organisms responsible for gangrene: filtration, exposure to heat, or exposure to chemical solutions. Conducting his own experiments, Dr. Lister confirmed Pasteur's conclusions and used his findings to develop antiseptic techniques for wounds. He found that carbolic acid solution, now known as phenol, reduced the incidence of gangrene when swabbed on wounds. He published a series of articles describing this procedure in 1867.

Prior to Dr. Lister's studies, people believed that chemical damage from exposure to bad air (miasma) was responsible for wound infections. Hospital wards were aired out as a precaution. A surgeon was not required to wash his hands before seeing a patient as it was not considered necessary and facilities for washing hands
were not available. Dr. Lister instructed surgeons to wear clean gloves and wash their hands before and after operations with \(5 \%\) carbolic acid solutions. Instruments were also washed in the same solution and assistants sprayed the solution in the operating room. He also suggested not using porous natural materials in the manufacture of medical instrument handles.

Dr. Lister left Glasgow in 1869, returning to Edinburgh as Professor of Surgery at the University of Edinburgh, and continued to develop improved methods of antisepsis and asepsis. This led to the rise of sterile surgery.

In 1879 Listerine mouthwash was named after him for his work in antisepsis. Also named in his honor is the bacterial genus Listeria, typified by the food-borne pathogen Listeria monocytogenes.

Dr. Lister was president of the Royal Society between 1895 and 1900. Following his death in 1912, a Memorial Fund led to the founding of the Lister Medal, an award presented by the Royal College of Surgeons of England in recognition of contributions to surgical science. It is considered as a most prestigious prize to be awarded to a surgeon.

Bandage scissors are angled tip scissors, with a blunt tip on the bottom blade, which helps in cutting bandages without gouging the skin. The bottom blade of the scissors is longer and goes easily under the bandages. The most popular is gS 15.8040, Lister Bandage Scissors \(71 / 4\) ", shown on page 15/4.

Super-Cut Scissors are renowned for their unsurpassed sharpness.

The stainless steel used to manufacture our Super-Cuts has been specially heat-treated to achieve a long-lasting razor sharp edge.

One serrated blade on gS 16.5610 helps to prevent tissue slippage and facilitates effortless cutting.
gS \(16.5415 \quad 31 / 2^{\prime \prime}\) str
gS \(16.542031 / 2^{\prime \prime}\) cvd
gS \(16.544041 / 2^{\prime \prime}\) str
gS \(16.560041 / 2^{\prime \prime}\) cvd
gS \(16.561041 / 2^{\prime \prime}\) cvd serr


One serrated blade on gS 16.5905 helps to prevent tissue slippage and facilitates effortless cutting.
gS \(16.5840 \quad 41 / 2^{\prime \prime}\) str
gS \(16.590041 / 2^{\prime \prime}\) cvd
gS \(16.590541 / 2^{\prime \prime}\) cvd serr
gS \(16.5940 \quad 51 / 4 "\) cvd
Super-Cut Stevens Tenotomy Scissors
blunt points




Useful for tissue dissection. S-shaped shanks help to maneuver in tight areas effectively. One serrated blade on gS 16.7545 helps to prevent tissue slippage and facilitates effortless cutting.
gS 16.7540 cvd gS 16.7545 cvd serr

Super-Cut LaGrange Scissors
4 1/2", sharp points


Useful for denser tissue dissection. One serrated blade helps to prevent tissue slippage and facilitates effortless cutting.
gS \(16.756043 / 4\) " cvd serr
Super-Cut Turmspitz
Scissors
sharp points



Useful for fine tissue dissection required during plastic surgery procedures.
gS 16.7550 \(43 / 4\) " cvd
Super-Cut Wagner
Scissors
sharp points




Flat blunted blades are useful for cutting tissue. One serrated blade on gS 16.7575 helps to prevent tissue slippage and facilitates effortless cutting.
gS 16.7570 cvd gS 16.7575 cvd serr

\section*{Super-Cut Kilner \\ Scissors}

4 3/4", blunt points

gS 16.4640 str gS 16.4700 cvd gS 16.4710 cvd serr

Super-Cut Baby Metzenbaum Scissors
4 1/2", blunt points



\section*{Super-Cut Metzenbaum Scissors}
blunt points
gS \(16.4800 \quad 51 / 2^{\prime \prime}\) str
gS \(16.482051 / 2 "\) cvd
gS 16.4920 7" str
gS 16.4940 7" cvd
gS \(16.4960 \quad 7 "\) cvd delicate
gS \(16.50188^{\prime \prime}\) str
gS 16.5020 8" cvd
gS 16.5180 9" cvd
gS \(16.530011 " ~ c v d ~_{\text {l }}\)
gS 16.5350 12" cvd
gS 16.5370 14" cvd


\section*{16/4 - super-cut scissors}
b/b = blunt/blunt
s/b = sharp/blunt
s/s = sharp/sharp
gS 16.3200 str s/b
gS 16.3210 str s/s
gS 16.3222 cvd b/b
gS \(16.3202 \mathrm{cvd} \mathrm{s} / \mathrm{b}\) gS \(16.3214 \mathrm{cvd} \mathrm{s} / \mathrm{s}\)

b/b

s/b

\(\mathrm{s} / \mathrm{s}\)

\section*{Super-Cut Operating Scissors} \(51 / 2^{\prime \prime}\)
gS \(16.3800 \quad 5\) 1/2" str gS 16.38025 1/2" cvd gS \(16.392063 / 4\) " str gS \(16.398063 / 4\) " cvd gS 16.4190 8" str gS 16.4195 8" cvd gS 16.4210 9" str \(^{\prime \prime}\) gS \(16.42209^{\prime \prime}\) cvd gS 16.4225 11" cvd

\section*{Super-Cut Mayo Scissors}
beveled blades, blunt points



Useful in plastic surgery or hemorrhoidectomy and other rectal procedures. Curved, beveled blades taper into sharp, fine tips which allow small and precise cuts in small surgical areas. One serrated blade helps to prevent tissue slippage and facilitates effortless cutting.
gS \(16.7580 \quad 5 \mathrm{c}\) cvd serr
Super-Cut Goldman-Fox Scissors sharp points


Useful in facial and plastic surgery procedures. Sharp tips allow small and precise cuts in small surgical areas and are helpful in spreading tissue. One serrated blade helps to prevent tissue slippage and facilitates effortless cutting.
gS \(16.7590 \quad 51 / 2^{\prime \prime}\) cvd serr

\section*{Super-Cut}

Peck Joseph Scissors sharp points


S-shaped shanks help to maneuver in tight areas effectively.
gS 16.7585 5 1/4" cvd

\section*{Super-Cut} Goldman-Fox Scissors sharp points


Long handles and very delicate blades for fine tissue dissection.
gS 16.5955 str gS 16.5960 cvd

Super-Cut Jamison Scissors (Stevens)
6 1/4", blunt points

\(\qquad\)

\section*{16/6 - super-cut scissors}

Blades are slightly curved for quick and easy cutting through tissue. One serrated blade helps to facilitate cutting the perineum and posterior vaginal wall in episiotomy procedures.
gS \(16.76207^{7 \prime \prime}\) cvd serr


Super-Cut Waldmann Episiotomy
Scissors
fine knob/sharp point


Long handles and delicate blades for fine tissue dissection. One serrated blade on gS 16.7610 helps to prevent tissue slippage and facilitates effortless cutting.
gS 16.7600 cvd gS 16.7610 cvd serr

\section*{Super-Cut Toennis Adson Scissors}

7", blunt points

Useful for trimming and opening vessels in cardiovascular and thoracic procedures. Used to cut vertically along blood vessels to expose the inside in procedures such as carotid endarterectomy or femoral endarterectomy. Available in 25,45 , or 60 degrees based on the location of the surgical site and user preference.

gS \(16.2500 \quad 25^{\circ}\)
gS \(16.25454^{\circ}\)
gS \(16.2560 \quad 60^{\circ}\)

\section*{Super-Cut Potts-Smith \\ Scissors}

7 1/2", delicate sharp points

Our Super-Cuts Bandage Scissors:
- Offer superb control.
- Reduce hand fatigue.
- Cut through multiple layers with precision and ease.
- Retain sharp edges longer than ordinary scissors.

Delicate blades and angled
 shank are ergonomically designed to cut finger and toe bandages. Fine knob slides easily under bandages. Keeps hands away from material being cut.


\section*{16/8 - super-cut scissors}


5 1/2" serr
gS \(16.310051 / 2^{\prime \prime}\)
gS \(16.311051 / 2^{\prime \prime}\) serr
gS \(16.312071 / 4\) "
Super-Cut Lister Bandage Scissors


Useful for cutting moleskin, a cotton fabric frequently used in the prevention and treatment of blisters, corns, or calluses. One blade is serrated.
gS 16.3150 str serr gS 16.3152 cvd serr

\section*{Super-Cut Moleskin Scissors}

7", sharp/blunt points



Oversized finger ring helps relieve pressure on third metacarpal.
gS 16.3140 8"

Super-Cut Lister Bandage Scissors
one large ring


gS 17.3513 5" narrow gS \(17.3514 \quad 51 / 2^{\prime \prime}\) narrow gS 17.3516 6" narrow gS 17.3518 7" narrow gS 17.3520 8" narrow gS \(17.3640 \quad 41 / 2^{\prime \prime}\) gS 17.3680 5" gS 17.3720 5 1/2"
gS 17.3760 6"
gS 17.3780 7"
gS 17.3800 8" gS 17.3860 10" gS 17.3900 12"

Tissue Forceps
\(1 \times 2\) teeth

```

gS 17.4100 4 1/2"
gS 17.4140 5"
gS 17.4180 5 1/2"
gS 17.4220 6"
gS 17.4222 7
gS 17.4226 8"
gS 17.4228 10"

```

Tissue Forceps
1x2 teeth
fluted handle


\(\begin{array}{ll}\text { gS } 17.1800 & 5 " \\ \text { gS } 17.1880 & 6 "\end{array}\)

Semken Tissue Forceps 1x2 teeth

\(\qquad\)

\section*{17/2- tissue forceps}

TC = Tungsten Carbide

\[
\begin{array}{ll}
\text { gS } 17.4070 & 7 " \\
\text { gS } 17.4072 & 8 " \\
\text { gS } 17.4074 & 10 " \\
\text { gS } 17.4076 & 12 "
\end{array}
\]

Potts-Smith Tissue Forceps 1x2 teeth serrated


\(\begin{array}{ll}\text { gS } 17.1690 & \text { str } \\ \text { gS } 17.1692 & \text { cvd }\end{array}\)
Cushing Tissue Forceps 6 3/4" \(1 \times 2\) teeth



\section*{17/4-tissue forceps}

TC = Tungsten Carbide


teeth
gS \(17.166043 / 4^{\prime \prime} 1 x 21.3 \mathrm{~mm}\)
gS \(17.164043 / 4 " 1 \times 2\) delicate 0.9 mm
gS \(17.166543 / 4^{\prime \prime} 1 \times 2\) deli tying platform smooth 0.9 mm
gS \(17.163043 / 4\) " \(1 \times 2\) cross serrated 1.3 mm
gS 17.1500 6" \(1 \times 22.0 \mathrm{~mm}\)
gS 17.1570 6" \(1 \times 2\) delicate 0.9 mm
gS \(17.167043 / 4\) " \(2 \times 31.7 \mathrm{~mm}\)
gS 17.16324 3/4" 1x2 TC cross serrated 1.6 mm
gS \(17.16346^{\prime \prime} \quad 1 \times 2\) TC cross serrated 2.0 mm
Adson Tissue Forceps



An ARCH Medical Solutions Company


Lightweight forceps due to fenestrations.
gS \(17.166643 / 4\) " 1.0 mm
Adson Tissue Forceps 1x2 teeth fenestrated handle


gS \(17.6020 \quad 8\) " 2.0 mm
Daicoff Vascular Needle Pulling Forceps \(1 \times 2\) teeth, TC, cross serrated

\section*{17/6-tissue forceps}


\begin{tabular}{lll} 
gS 17.0616 & 6 & \(1 / 4 "\) \\
gS 17.0620 & 1.5 mm \\
gS & 17.0624 & 1.5 mm \\
gS 17.0626 & \(12^{\prime \prime}\) & 1.5 mm \\
g & 1.5 mm
\end{tabular}
\begin{tabular}{lll} 
gS 17.0816 & 6 & \(1 / 4^{\prime \prime}\) \\
gS & 2 mm \\
gS 17.0820 & \(8 "\) & 2 mm \\
gS 17.0824 & \(91 / 2^{\prime \prime}\) & 2 mm \\
gS & \(12^{\prime \prime}\) & 2 mm
\end{tabular}
\begin{tabular}{lll} 
gS 17.0832 & \(61 / 4 "\) & 2.7 mm \\
gS 17.0833 & \(8 "\) & 2.7 mm \\
gS 17.0834 & \(91 / 2^{\prime \prime}\) & 2.7 mm \\
gS 17.0835 & \(12^{\prime \prime}\) & 2.7 mm \\
& & \\
gS 17.1016 & \(61 / 4^{\prime \prime}\) & 3.5 mm \\
gS 17.1020 & 8 " & 3.5 mm \\
gS 17.1024 & \(91 / 2^{\prime \prime}\) & 3.5 mm \\
gS 17.1030 & \(12^{\prime \prime}\) & 3.5 mm
\end{tabular}

DeBakey Tissue Forceps atraumatic

DA = Double Action
TC = Tungsten Carbide

gS \(17.091661 / \mathbf{2 " ~}^{\prime \prime}\)
gS 17.0920 8"
gS 17.0924 9 1/2"
gS 17.0930 12"
DeBakey Forceps
2mm
angled atraumatic



Useful for larger patients during bariatric procedures.
gS \(17.8000 \quad 12\) " with platform
Bariatric Extra Long Suture Forceps DA 1x2 teeth, TC, cross serrated

```

gS 17.2920 6"
gS 17.2960 8"
gS 17.2980 10"
Russian Tissue Forceps serrated cupped tips

```

\section*{17/8-tissue forceps}

straight

curved up

curved down
gS 17.6260 straight
gS 17.6262 curved up
gS 17.6264 curved down
Adson Hypophyseal Forceps
\(9 "\), 6 mm round cups bayonet


Useful for larger
patients during
bariatric procedures.
gS 17.0470 14"
Bariatric Extra Long
Singley Tuttle Tissue Forceps
serrated fenestrated tips


\section*{17/10-tissue forceps}


Rochester Ochsner Forceps 1x2 teeth serrated

gS 17.5060 str gS 17.5080 cvd

\section*{Kocher Forceps}

5 1/2", 1x2 teeth serrated


gS \(17.4250 \quad 61 / 4^{\prime \prime}\)
gS \(17.42557^{7 \prime}\)
gS 17.42418 "
gS \(17.4260 \quad 91 / \mathbf{2 " ~}^{\prime \prime}\) gS 17.4264 12"

Babcock Forceps serrated fenestrated tips

An ARCH Medical Solutions Company


Plain Splinter Forceps serrated

gS \(18.4860 \quad 3 "\) str gS \(18.490041 / 2^{\prime \prime}\) str

Feilchenfeld Splinter Forceps serrated

gS 18.5780 6" str gS 18.57856 6" ang
Virtus Splinter Forceps serrated
\(\qquad\)


Carmalt Splinter Forceps serrated

gS 18.5100 4 1/4" str gS 18.5120 \(41 / 4\) " cvd
\(\qquad\)
\(\bullet\)



gS \(19.228041 / \mathbf{2 " ~}^{\prime \prime}\)
gS \(19.22825^{\prime \prime}\)
gS 19.2284 5 1/2"
gS \(19.22866^{\prime \prime}\)
gS \(19.22887^{7 \prime}\)
gS 19.2290 8" \(^{\prime \prime}\)
gS 19.2292 10"
Dressing Forceps fluted handle serrated

\%
gS \(19.17605^{\prime \prime}\) gS 19.1761 6"

Semken Dressing Forceps delicate, serrated


\section*{19/2-dressing forceps}

\section*{TC = Tungsten Carbide}
gS \(19.160043 / 4^{\prime \prime}\) delicate, serrated
gS \(19.162043 / 4\) " standard, serrated
gS \(19.162543 / 4\) " smooth
gS \(19.172043 / 4\) " standard TC, serrated
gS \(19.16356 "\), serrated
gS 19.1722 6" TC, serrated
Adson Dressing Forceps


gS 19.2800 7" str
gS \(19.28067^{\prime \prime}\) cvd
gS 19.2810 7" str TC 1.0 mm
Gerald Dressing Forceps
delicate
serrated


TC = Tungsten Carbide

gS \(19.17706 "\)
Cotton and Dressing Forceps
angled with lock, serrated


gS 19.1750 7"
gS 19.1756 7" TC
Cushing Dressing Forceps
straight, serrated smooth handle
gS \(19.286081 / \mathbf{2}^{\prime \prime}\)
Adson Bayonet Dressing Forceps serrated

An ARCH Medical Solutions Company


\section*{did you know... ?}

The word forceps is derived from the Latin "forca", meaning a snare or trap. Mechanically, forceps employ the principle of the lever to grasp and apply pressure.

These type of forceps are commonly referred to as "thumb forceps" or "pick ups". They are held between the thumb and two or three fingers of one hand, with the top end resting on top of the outside of the hand at the base of the thumb and index finger. Spring tension at one end holds the grasping ends apart until pressure is applied. This allows one to quickly and easily grasp small objects or tissue to move and release it, or to grasp and hold tissue with easily variable pressure. They are used to hold tissue in place when applying sutures, to gently move tissues out of the way during exploratory surgery and to move dressings or draping without using the hands or fingers.

Dr. Harvey Cushing is credited with creating the field of brain surgery as a surgical discipline. Born in Cleveland, Ohio in 1869, he attended Yale University, and after graduating in 1891, entered Harvard Medical School and received his medical degree in 1895. He performed post-graduate training as an intern at Massachusetts General Hospital and then at Johns Hopkins Hospital. At Hopkins he was influenced by several famous physicians: William H. Welch, Howard A. Kelly, Sir William Osler and in particular William Halsted, who most influenced his surgical skills.

In 1911, he was appointed surgeon-in-chief at the Peter Bent Brigham Hospital in Boston and then as professor of surgery at the Harvard Medical School in 1912. He reported on an endocrinological syndrome caused by a malfunction of the pituitary gland, which he termed "polyglandular syndrome", also known as Cushing's disease. In 1915, before the Clinical Congress of Surgeons in Boston, he showed the possibility of influencing stature by operating on the pituitary gland. In 1930, Dr. Cushing was awarded the Lister Medal for his contributions to surgical science. From 1933 to 1937, when he retired, he worked at Yale University School of Medicine.

He developed many of the tools and techniques of surgical practice which are still in use today. He was one of the first physicians in the U.S. to use x-rays to diagnose patients; he introduced an apparatus to measure blood pressure during operations; he recommended keeping a record of the patient's vital signs during an operation, and he was the first to use electrocoagulation, the clotting of tissue using a high frequency electrical current applied locally with a metal instrument or needle with the aim of stopping bleeding, for surgery. Cushing Forceps are shown on pages 2 and 3 in this section.

Dr. Cushing achieved worldwide recognition because of his innovation, skill and published observations. He is credited for training the first generation of neurosurgeons in the U.S. At the end of his career, he was rewarded through the foundation of the first national neurosurgical association, the Harvey Cushing Society, now known as the American Association of Neurological Surgeons (AANS). The Harvey Cushing/John Hay Whitney Medical Library at Yale University was also named in his honor. He passed away in 1939.

\section*{sponge and tubing forceps - 20/1}

Useful for guiding a tracheal tube into the larynx or a nasogastric tube into the esophagus under direct vision. It is also used to place pharyngeal packs and remove foreign bodies.

The angle in the forceps enables them to be used with the handles out of the direct line of sight.
gS \(20.39017^{\prime \prime}\)
gS 20.3902 8"
gS 20.3903 1/2"

\section*{Magill Catheter Forceps serrated}

gS 20.5440 7" str
Presbyterian Tubing Forceps smooth

gS 20.4925 7" str gS 20.4927 10" str

Rampley Sponge Forceps serrated

\section*{20/2 - sponge and towel forceps}
\begin{tabular}{ll} 
gS 20.4660 & \(7 "\) " str serr \\
gS 20.4680 & \(7 "\) c cvd serr \\
gS 20.4700 & \(7 "\) str smooth \\
gS 20.4720 & \(7 "\) cvd smooth \\
gS 20.4860 & \(91 / 2^{\prime \prime}\) str serr \\
gS 20.4880 & \(91 / 2^{\prime \prime}\) cvd serr \\
gS 20.4900 & \(91 / 2^{\prime \prime}\) str smooth \\
gS 20.4920 & \(91 / 2^{\prime \prime}\) cvd smooth
\end{tabular}


\section*{Foerster Sponge Forceps}


Foerster Sponge

\section*{Forceps}
narrow serrated long

gS \(20.8000 \quad 12\) 1/2" cvd
Bariatric Extra Long Kelly Sponge Forceps serrated


\section*{sponge and towel forceps - 20/3}

Useful for attaching and securing drape material or for grasping tissue in order to apply traction.
gS \(20.57003^{\prime \prime}\) gS \(20.5780 \quad 31 / \mathbf{2}^{\prime \prime}\)

\section*{Jones Towel Forceps} perforating sharp points
gS \(20.5640 \quad 51 / 4 "\)
Backhaus Roeder Towel Forceps perforating, sharp ball tips

gS \(20.5580 \quad 31 / \mathbf{2 " ~}^{\prime \prime}\) gS 20.5620 5 1/4"

Backhaus Towel Forceps
perforating sharp points


우

gS 20.5571 5"




Halsey Needle Holder
 gS 21.2660 5 1/2" TC


gS \(21.26205^{\prime \prime}\) gS \(21.2640 \quad 51 / \mathbf{2 " ~}^{\prime \prime}\)

Hegar-Baumgartner Needle Holder serrated

gS \(21.192043 / 4 "\) gS 21.1940 4 3/4" TC

Derf Needle Holder serrated
\(\qquad\)


\section*{21/2 - needle holders}
TC = Tungsten Carbide

gS \(21.27006 "\)
gS 21.2710 7" \(^{\prime \prime}\)
gS 21.27218 " gS 21.2730 9"
gS 21.2740 6" TC
gS 21.2741 6" TC left-handed
gS 21.2750 7" TC
gS 21.2760 8" TC
gS 21.2780 9" TC
gS 21.2782 10" TC
gS 21.2784 12" TC
Crile-Wood Needle Holder serrated

gS \(21.428061 / 4^{\prime \prime}\)
gS 21.4284 7"
gS 21.4288 8"
gS 21.4290 1/4" TC
gS 21.4294 7" TC
gS 21.4298 8" TC
Mayo Hegar Needle Holder
delicate, serrated

gS 21.3700 5 1/2"
gS 21.3700 5 1/2"
gS 21.3720 6"
gS 21.3720 6"
gS 21.3780 7"
gS 21.3780 7"
gS 21.3840 8"
gS 21.3840 8"
gS 21.3845 9 1/2"
gS 21.3845 9 1/2"
gS 21.3860 10 1/2"
gS 21.3860 10 1/2"
gS 21.3865 12"
gS 21.3865 12"
gS 21.4000 5 1/2" TC
gS 21.4000 5 1/2" TC
gS 21.4020 6" TC
gS 21.4020 6" TC
gS 21.4080 7" TC
gS 21.4080 7" TC
gS 21.4140 8" TC
gS 21.4140 8" TC
gS 21.4150 9 1/2" TC
gS 21.4150 9 1/2" TC
gS 21.4160 10 1/2" TC
gS 21.4160 10 1/2" TC
gS 21.4170 12" TC
gS 21.4170 12" TC
Mayo Hegar Needle Holder serrated



\section*{21/4 - needle holders}

TC = Tungsten Carbide
gS 21.2300 5 1/4" gS \(21.232071 / \mathbf{" ' ~}^{\prime \prime}\)

Brown Needle Holder serrated


gS \(21.252071 / 2^{\prime \prime}\) TC gS \(21.2540 \quad 10\) 1/2" TC

Sarot Needle Holder serrated

An ARCH Medical Solutions Company

TC = Tungsten Carbide
ombination needle holder and suture scissors.

gS \(21.5240 \quad 41 / 2^{\prime \prime}\) delicate serr gS \(21.528051 / \mathbf{2}^{\prime \prime}\) serr
gS \(21.532061 / 2^{\prime \prime}\) serr
gS \(21.5340 \quad 71 / 4\) " serr
gS 21.5400 4 1/2" delicate serr TC
gS \(21.542043 / 4\) " delicate smooth TC
gS \(21.5480 \quad 51 / 2^{\prime \prime}\) serr TC
gS \(21.552061 / 2^{\prime \prime}\) serr TC
gS \(21.552271 / 4\) " serr TC
Olsen Hegar Needle Holder


TC = Tungsten Carbide


Useful for larger patients.


\section*{did you know...?}

Alfred Hegar was a German gynecologist born in 1830 in Darmstadt. He became Professor of Gynecology and Obstetrics at the University of Freiburg in 1864 and was the author of important works on uterine surgery techniques, colporrhaphy (surgical repair of a defect in the vaginal wall), pregnancy diagnosis and childbed fever infection. An operation for repairing a ruptured perineum was known as "Hegar's operation". He also developed surgical tools, such as a needle holder and Hegar's dilator, for widening the cervical canal. He passed away in 1914.

Needle holders are used to hold the needle when closing a wound with sutures. Although needle holders look similar to hemostats, their jaws are thicker and shorter. Shorter patterns are needed when working close to the surface while longer patterns are for deeper cavities. Like hemostats, they also have ratcheted handles that lock when closed, in order to hold the needle. This allows a surgeon to pass the needle through both sides of the wound without dropping it, as rotation of the needle holder is required during this process.

The size of the needle will determine the size of the needle holder to be used. Generally, if the needle is small, the jaws of the needle holder should also be small. If a needle is not held securely in the jaws of a selected needle holder, choose a larger size needle holder to avoid the needle slipping or becoming overstressed, which may lead to breakage.

Some gSource needle holders, forceps, scissors, pin cutters, pliers, and wire tighteners are manufactured using tungsten carbide (TC) in the working ends or jaws of the instrument. Tungsten carbide is an alloy of tungsten and carbon. It is harder than the steel used in the manufacture of needles, wires, and pins and therefore is very durable. While generally more expensive, these instruments offer long-term savings due to TC material being stronger and more resistant to "metal-on-metal" wear than stainless steel patterns. Instruments manufactured with tungsten carbide are usually identified by their gold-plated handles.

Instruments with tungsten carbide should never be immersed in sterilizing solutions containing benzyl ammonium chloride (BAC) as it will soften and dissolve the tungsten carbide. Never use bleach as it will cause severe pitting.


gS 22.1752 str gS 22.1754 cvd

Hartmann Mosquito Forceps
4", serrated \(1 \times 2\) teeth


\section*{22/2 - hemostatic forceps}

gS 22.1812 str gS 22.1813 cvd

Petit-Point Jacobson Mosquito Forceps 5", very delicate serrated

gS 22.2060 str gS 22.2080 cvd

Providence Hospital Forceps
5 1/2", serrated

gS 22.2560 5" str
gS \(22.26005^{\prime \prime}\) str delicate
gS \(22.25805^{\prime \prime}\) cvd
gS \(22.26205^{\prime \prime}\) cvd delicate
gS 22.2590 51/2" cvd
gS 22.2655 7" str \(^{\prime \prime}\)
gS 22.2656 7" cvd
gS 22.2657 8" str
gS 22.2658 8" cvd


Mosquito Forceps (Halsted) serrated



gS 22.2660 str gS 22.2680 cvd

Kelly Forceps 5 1/2"
serrated jaws


\section*{22/4 - hemostatic forceps}

gS 22.2860 str gS 22.2880 cvd

Rankin-Crile Forceps 6 1/4" serrated jaws

gS 22.2960 str gS 22.2980 cvd

Rankin-Kelly Forceps 6 1/4" serrated jaws


\footnotetext{
gS 22.4020 13cm [5"] str
gS 22.4040 13cm [5"] cvd
gS 22.4060 14cm [5 1/2"] str
gS 22.406114 cm [5 1/2"] str left-handed
gS 22.4080 14cm [5 1/2"] cvd gS 22.4160 16cm [6 1/4"] str gS 22.4180 16 cm [6 1/4"] cvd gS 22.4260 18cm [7"] str gS 22.4280 18cm [7"] cvd gS 22.4360 20 cm [8"] str gS 22.4380 20 cm [8"] cvd gS 22.4460 22cm [8 1/2"] str gS 22.4480 22cm [8 1/2"] cvd gS 22.4500 24cm [9 1/2"] str gS 22.4520 24cm [9 1/2"] cvd gS 22.4560 26 cm [10"] str gS 22.4580 26cm [10"] cvd gS 22.460030 cm [12"] str gS 22.4620 30cm [12"] cvd gS 22.4920 40cm [16"] cvd

Rochester Pean Forceps serrated
}


An ARCH Medical Solutions Company

\(\mathfrak{N}\)

gS 22.8470 str gS 22.8472 cvd

Adson Artery Forceps 7 1/4"
serrated \(1 \times 2\) teeth

\section*{22/6 - hemostatic forceps}

gS \(22.6550{ }^{\prime \prime}\) gS 22.6560 7"

Mixter Baby Forceps curved serrated
\(\qquad\)

gS \(22.6570 \quad 51 / 4\) " delicate
gS \(22.662061 / 4 "\) gS \(22.6640 \quad 71 / 4\)

Mixter Forceps curved serrated

gS \(22.2710 \quad 51 / \mathbf{2 "}^{\prime \prime}\)
gS \(22.27127^{\prime \prime}\)
gS 22.2713 8"
gS 22.2714 9"
gS \(22.2715{ }^{10}{ }^{\prime \prime}\)
gS \(22.2725{ }^{11 "}\)
Gemini Forceps
curved serrated
Useful in thoracic procedures due to partially serrated jaws and ability to grasp arteries or maneuver tapes around the arteries of the heart.
gS 22.7702 slight cvd
gS 22.7702 slight cvd
gS 22.7704 medium cvd
gS 22.7704 medium cvd
gS 22.7706 full cvd
gS 22.7706 full cvd
gS 22.7708 ang
gS 22.7708 ang

\section*{Rumel Dissecting Forceps} 9" serrated

\section*{22/8-hemostatic forceps}

gS 22.2740 8 1/2" cvd
Vanderbilt Deep Vessel Forceps serrated

gS \(22.9160 \quad 6\) 1/4" str gS \(22.918061 / 4^{\prime \prime}\) cvd gS \(22.926073 / 4\) " str gS \(22.928073 / 4\) " cvd Ferguson Forceps serrated 1x2 jaws

gS 22.66508 1/2" full cvd
Mixter Forceps cross serrated tip longitudinally serrated jaws

Source
An ARCH Medical Solutions Company




\section*{did you know... ?}

The primary use of a hemostat is to clamp and hold onto blood vessels. It is important to block off blood vessels during surgery so that the patient does not bleed to death. "Hemo" is a Latin prefix word that means blood and "stat" is an abbreviation for the Latin word "statim" meaning immediately.

Hemostats resemble a pair of scissors with the blade replaced by a blunted grip. They also feature a locking mechanism to allow them to act as clamps.


Useful for larger patients.


Used to hold and apply Raney scalp clips in order to provide hemostasis of the edges of scalp flaps. Helps to prevent loss of large amounts of blood and pooling of blood in certain areas of the scalp.

\section*{Raney Clip Applying Forceps}


\section*{did you know... ?}

Neurosurgery in the late 19th and early 20th centuries was often hindered due to a lack of effective methods of scalp hemostasis.

The benefits of manual pressure in hemostasis (gauze pads held down manually at the base of the flap and around the margins of the wound, possibly in combination with hemostatic clamps) was rediscovered by Dr. Charles Frazier in 1906 and endorsed by Dr. Harvey Cushing. It was Dr. Cushing's practice to place hemostats along the cut edge of the galea aponeurotica (the aponeurosis underlying the scalp and linking the frontalis and occipitalis muscles, also called epicranial aponeurosis) while simultaneously applying pressure. The forceps would be reflected over the scalp edge, allowing the instruments to hang which ensured the galeal edge folded sharply backward. Occlusion of scalp bleeding was ensured by the combined weight of the instruments and the pressure of the reflected and out-folded galea. Dr. Cushing indicated this technique afforded him the luxury of bloodless incisions on several occasions. The chance of tears forming in the galea from the weight-induced hemostasis was reduced with the introduction of angular hemostatic forceps in 1927 by Dr. Anatole Kolodny.

Attempts to reduce the bulk of bunched hemostats lead to the development of steel clips. Dr. Henry Souttar was
first to describe small steel clips applied with forceps to the scalp edge. In 1933 Dr. Alfred Adson and Dr. Edgar Fincher squeezed silver clips onto the scalp margin. In 1934 Dr. Percival Bailey brought the Michel clip applier to the U.S., which he fashioned by modifying an instrument in use by Dr. Clovis Vincent in Paris.

Two brothers, Aidan and Rupert Raney, worked in southern California and came up with a unique idea leading to the development of the modern Raney scalp clips in 1936. This innovation allowed safe and bloodless craniotomies to be performed and revolutionized scalp hemostasis.

The Raney Clip Applying Forceps, shown on this page, can be used to apply Raney Scalp Clips. The clips have overlapping jaws with smooth radii to help ensure secure atraumatic placement.

\section*{did you know... ?}

A craniotomy is the surgical removal of part of the bone from the skull to expose the brain. Specialized tools are used to remove the section of bone called the bone flap. The bone flap is temporarily removed, then replaced after the brain surgery has been done.

Some craniotomy procedures may use the guidance of computers and imaging (magnetic resonance imaging (MRI) or computerized tomography (CT) scans) to reach the precise location within the brain that is to be treated. This technique requires the use of a frame placed onto the skull or a frameless system using superficially placed markers or landmarks on the scalp. When either of these imaging procedures is used along with the craniotomy procedure, it is called stereotactic craniotomy.

Scans made of the brain, in conjunction with these computers and localizing frames, provide a three dimensional image, for example, of a tumor within the brain. It is useful in making the distinction between tumor tissue and healthy tissue and reaching the precise location of the abnormal tissue.

Other uses include stereotactic biopsy of the brain (a needle is guided into an abnormal area so that a piece of tissue may be removed for exam under a microscope), stereotactic aspiration (removal of fluid from abscesses, hematomas, or cysts), and stereotactic radiosurgery (such as gamma knife radiosurgery).

An endoscopic craniotomy is another type of craniotomy that involves the insertion of a lighted scope with a camera into the brain through a small incision in the skull.

Aneurysm clipping is another surgical procedure which may require a craniotomy. A cerebral aneurysm (also called an intracranial aneurysm or brain aneurysm) is a bulging weakened area in the wall of an artery in the brain, resulting in an abnormal widening or ballooning. Because of the weakened area in the artery wall, there is a risk for rupture (bursting) of the aneurysm. Placement of a metal clip across the "neck" of the aneurysm isolates the aneurysm from the rest of the circulatory system by blocking blood flow, thereby preventing rupture.

Craniectomy is a similar procedure during which a portion of the skull is permanently removed or replaced later during a second surgery after the swelling has gone down.

Other related procedures that may be used to diagnose brain disorders include cerebral arteriogram, computed tomography (CT) scan of the brain, electroencephalogram (EEG), magnetic resonance imaging (MRI) of the brain, positron emission tomography (PET) scan, and X-rays of the skull.

A craniotomy may be done for a variety of reasons, including, but not limited to, the following:
- Diagnosing, removing, or treating brain tumors
- Clipping or repairing of an aneurysm
- Removing blood or blood clots from a leaking blood vessel
- Removing an arteriovenous malformation (AVM), an abnormal mass of blood vessels (arteries and veins)
- Draining a brain abscess. An infected pus-filled pocket
- Repairing skull fractures
- Repairing a tear in the membrane lining the brain (dura mater)
- Relieving pressure within the brain (intracranial pressure) by removing damaged or swollen areas of the brain that may be caused by traumatic injury or stroke
- Treating epilepsy, a neurological condition involving the brain that makes people more susceptible to seizures
- Implanting stimulator devices to treat movement disorders such as Parkinson's disease or dystonia (a type of movement disorder)

TC = Tungsten Carbide

gS 24.1320 5 1/2" cvd
Barraquer Needle Holder with lock
\(\qquad\)

gS \(24.28927^{\prime \prime}\) str serr TC gS 24.2893 7" cvd serr TC

\section*{Castroviejo Needle}

\section*{Holder}
with lock


\section*{did you know... ?}

Microsurgical procedures require equipment which magnifies the operating field. Microsurgical instruments must be capable of delicately manipulating structures barely visible to the naked eye, with handles large enough to hold comfortably and securely. They must also take into account the tremor of the surgeon's hand, which can be greatly amplified under magnification.

\section*{did you know... ?}

Ramón Castroviejo was a Spanish and American eye surgeon known for his achievements in corneal transplantation. Born in 1904 in Logroño, Spain he received his medical education at the University of Madrid. He graduated in 1927 and worked at the Chicago Eye, Ear, Nose and Throat Hospital and the Mayo Clinic before coming to Columbia Presbyterian Medical Center in New York in 1931. He became the director of Ophthalmology at St. Vincent's Hospital and later purchased the Hammond House and modified the top two floors of the building to open as an eye hospital.

He improved the technique for grafting of the human cornea in the 1930's and 1940's, prompting the worldwide adoption of corneal transplantation as a standard way to deal with severe corneal pathology. Rather than create a circular window in the cornea, he created a rectangular one and was successful in his transplants. Although the medical community was slow to recognize his successes, Dr. Castroviejo was eventually commended and recognized for his sightsaving corneal tissue transplant techniques, which he continued to refine and teach for many years. Dr. Castroviejo also promoted the donation of corneal tissue in the United States and designed numerous ophthalmic instruments, including the Castroviejo needle holder, an instrument used in eye and microsurgery, as shown on page 1 in this section. After his retirement he moved to Madrid, and passed away in 1987.

Ignacio Barraquer was a Spanish ophthalmologist known for advancing cataract surgery. Dr. Barraquer was born in 1884 in Barcelona, Catalonia, Spain and received his medical doctorate in 1908 in Barcelona. Upon his father's retirement, he was appointed as Acting Professor of Ophthalmology at the School of Medicine and held this position until 1923. He invented many surgical instruments and procedures involving cataract surgery. Among his other achievements, Barraquer also founded, planned, and designed the Centro de Oftalmología Barraquer. He passed away in 1965.

José Barraquer came from a family of four generations of prominent ophthalmologists, and is acknowledged as the father of refractive surgery. He was the son of Ignacio Barraquer and was born in 1916 in Barcelona, Spain, but moved in 1953 to Bogota, Colombia. There, he founded the Barraquer Institute of America, where he trained many of the refractive surgeons practicing around the world today. The Barraquer Institute of America is a civilian nonprofit scientific institution dedicated to the research, study, teaching and dissemination of the science of ophthalmology. One of its goals is to provide free eye care to poor Colombians. The Barraquer Institute also established the first eye bank in Colombia.

Dr. Barraquer promoted the improvement of suture material and technique in cataract and corneal surgery, and designed numerous surgical instruments, including the Barraquer Needle Holder, as shown on page 1 in this section. He was dedicated to the idea of reshaping the cornea to change the eye's refractive power. He developed the breakthrough eye technology that made LASIK (Laser-Assisted Stromal In-situ Keratomileusis) surgery possible. LASIK involves the use of lasers to carve very thin slices of cornea which are then reshaped so as to reduce nearsightedness and other optical health problems. He invented the cryolathe and microkeratome, which are the instruments used to perform LASIK surgery. Dr. Barraquer continued to practice, invent and teach until his death in 1998.


gS 25.2561 sharp gS 25.2562 blunt

Frazier Hook
5", 1 prong
2.5 mm

\section*{25/2 - skin and nerve hooks}

gS \(25.1600 \quad 3.0 \mathrm{~mm}\) gS \(25.1640 \quad 5.0 \mathrm{~mm}\) gS \(25.1680 \quad 7.0 \mathrm{~mm}\)

Kleinert-Kutz Hook 6", 1 prong sharp

-

gS 25.1990 sharp gS 25.1992 blunt
Wiener Skin Hook
5", 1 prong 3.5 mm






An ARCH Medical Solutions Company


Niro Skin Hook
6 3/4", 1 prong sharp

gS 25.13511 prong gS 25.13522 prongs

Lahey Skin Hook 4 3/4", sharp 4.0 mm

gS \(25.1770 \quad 2.0 \mathrm{~mm}\) gS 25.1830 3.0mm

\section*{Gillies Hook}

7", 1 prong sharp




\begin{tabular}{lll} 
& sharp & depth \\
gS 25.2609 & 1 prong & 4.0 mm \\
gS 25.2610 & 2 prongs & 6.0 mm \\
gS 25.2620 & 3 prongs & 7.0 mm \\
& & \\
gS \(\mathbf{2 5 . 2 6 4 0}\) & 1 prong & depth \\
gS \(\mathbf{2 5 . 2 6 6 0}\) & 2 prongs & 6.0 mm \\
gS 25.2720 & 3 prongs & 7.0 mm
\end{tabular}



\section*{Rigid Retractor}
\(61 / 2^{\prime \prime}\)

\section*{25/6 - skin and nerve hooks}


Flexible Retractor
6 1/4"
flexible shaft
 gS \(25.25806 "\)

Hoen Dural Separator blunt, \(90^{\circ}\) 3.0 mm

gS 25.1865 8" \(^{\prime \prime}\)
gS 25.1869 12"
Adson Nerve Hook blunt, \(90^{\circ}\) 4.0 mm


gS 25.1862 9"
Hoen Nerve Hook blunt, \(90^{\circ}\) 10.0 mm

\(\longrightarrow\)

\section*{25/8 - skin and nerve hooks}

Dandy Nerve Hook
9", blunt
\(90^{\circ}, 4.0 \mathrm{~mm}\)



gS 25.1840 6 1/2" blunt

\section*{Graham Hook} 1 prong 7.0 mm

gS 25.1845 8" blunt \(^{\prime \prime}\)
Smithwick Button Hook 1 prong 10.0 mm

An ARCH Medical Solutions Company

OD = Outside Diameter

gS 25.2030 12"
gProbe, Ball
\(90^{\circ}\)
ball OD 2.6 mm

gS \(\mathbf{2 5 . 2 0 2 0}\) straight gS 25.2025 curved
gProbe, Ball 10 1/2", ball OD 2.3mm with graduation lines
gS \(25.204545^{\circ}\)
gS \(25.205090^{\circ}\)
gProbe, Nerve
15", blunt

\section*{did you know... ?}

Sir Harold Delf Gillies was born in 1882 in New Zealand, and later became a London based otolaryngologist who is considered by many as the father of plastic surgery.

In World War I, Dr. Gillies developed many of the techniques of modern plastic surgery from caring for soldiers suffering from disfiguring facial injuries. Dr. Gillies volunteered in France with the Red Cross, and during that time he learned about plastic surgery. His work was expanded upon during World War II by his cousin and a former student, who pioneered treatments for members of the Royal Air Force crew who suffered from severe burns. In 1946, Dr. Gillies carried out the first female-to-male sex reassignment surgery and in 1951 the first male-to-female sex reassignment surgery. He passed away in 1960.

Walter Edward Dandy was an American neurosurgeon and scientist. He is widely considered as one of the founding fathers of neurosurgery, and is credited with numerous neurosurgical discoveries and innovations, including:
- Description of the circulation of cerebrospinal fluid in the brain.
- Surgical treatment of hydrocephalus, a condition in which fluid accumulates in the brain.
- Invention of air ventriculography, a method of taking x-ray pictures of the ventricles of the brain after air has been introduced to replace the cerebrospinal fluid. By introducing ventriculography in 1918, and later encephalography, he made the accurate diagnosis and localization of tumors of the brain and intracranial tissues possible.
- Introduction of pneumoencephalography, a radiographic visualization of the cerebral ventricles and subarachnoid spaces after the injection of air or gas. It has been largely replaced by CT (computed tomography) and MRI (magnetic resonance imaging) techniques.
- Description of brain endoscopy.
- Establishment of the first intensive care unit.
- First clipping of an intracranial aneurysm.

Born in 1886, Dr. Dandy graduated in 1907 from the University of Missouri and enrolled in the Johns Hopkins University School of Medicine, graduating in 1910 at the age of 24 . He became the sixth
appointee to the Hunterian Laboratory of Experimental Medicine under Harvey W. Cushing from 1910-1911. In 1911, he earned a Master of Arts degree for his work in the Hunterian Laboratory, and went on to join the Johns Hopkins Hospital surgical staff for one year as Dr. Cushing's Assistant Resident. Dr. Dandy completed his general surgical residency at the Johns Hopkins Hospital under William S. Halsted in 1918.

While Dr. Dandy was introduced to the field of neurosurgery by Dr. Cushing, it was George J. Heuer who completed Dr. Dandy's neurosurgical training following Dr. Cushing's departure in 1912. Dr. Heuer had graduated from the Johns Hopkins University School of Medicine in 1908, worked as Dr. Cushing's first Assistant Resident from 1908-1909, and served as Dr. Halsted's Chief Resident from 1911 to 1914. When Dr. Heuer left Hopkins in 1922 to become the head of surgery at the University of Cincinnati, Dr. Dandy remained as the only neurosurgeon at the Johns Hopkins Hospital until his death in 1946.

During his 40-year medical career his contributions to the field of neurosurgery include 159 articles and 5 books, among them a classic text on neurosurgery, "Surgery of the Brain". The discovery of ventriculography was considered his greatest contribution. Dr. Dandy also devised new instruments, including the Dandy Nerve Hook on page 8 of this section, and performed over 2,000 operations, among them operations for hydrocephalus, brain abscesses, subdural hematoma, trifacial neuralgia, and intervertebral discs.

The Department of Neurosurgery at New York University was established with the recruitment of Thomas I. Hoen in 1951. Dr. Hoen's academic credentials included medical school at Johns Hopkins in Baltimore, Maryland; a Halsted fellowship in surgery at Johns Hopkins; general surgery and then neurosurgical training at the Peter Bent Brigham Hospital in Boston, Massachusetts, under Dr. Harvey Cushing; and further neurosurgical training under Dr. Wilder Penfield at the Royal Victoria Hospital in Montreal, Canada. After training, Dr. Hoen accepted academic posts in Montreal and then was professor of neurology and neurosurgery at New York Medical College, Flower and Fifth Avenue Hospitals from 1931 to 1951. The Hoen Dural Separators are shown on page 6 in this section.


gS 26.0480 small gS 26.0482 large

Shapleigh Ear Curette 6" straight
blunt
gS 26.0590 \#00
gS 26.0610 \#0
gS 26.0630 \#1
gS 26.0650 \#2
gS 26.0670 \#3
gS 26.0680 \#4
gS 26.0690 \#5
straight
sharp, one side
gS \(26.0701 \quad \# 00\)
gS \(26.0702 \quad \# 0\)
gS 26.0703
gS 26.0704 \(\quad \# 2\)

Buck Ear Curette 6 1/2"

gS 26.1960 small gS 26.1980 medium gS 26.2000 large

Billeau Ear Loop 6 1/2" straight

angled blunt gS 26.0740 \#00 gS 26.0760 \# gS 26.0780 \#1 gS 26.0800 \#2 gS 26.0820 \#3 gS 26.0840 \#4 gS 26.0860 \#5

angled sharp, one side gS 26.0910 \#00 gS 26.0920 \#0 gS 26.0930 \#1 gS 26.0940 \#2 gS 26.0950 \#3 gS 26.0960 \#4 gS 26.0970 \#5

Useful for middle ear surgery, tympanoplasty and stapedotomy.
gS \(26.0303 \quad 0.3 \mathrm{~mm}\) gS \(26.0304 \quad 0.4 \mathrm{~mm}\) gS \(26.0305 \quad 0.5 \mathrm{~mm}\) gS 26.03060 .6 mm gS \(26.0307 \quad 0.7 \mathrm{~mm}\) gS \(26.0308 \quad 0.8 \mathrm{~mm}\)


Fisch Perforator
6 1/4" straight
sharp point
品



Commonly used in ear, nose and throat procedures.
gS 26.0337 7" 7 mm
Lempert Elevator curved sharp

\section*{26/4 - ear, nose and throat}

Useful in nasal septum procedures.

gS 26.0423 8" 3 mm
Gorney Suction Elevator
blunt

Useful in ear, nose and throat procedures.

gS 26.10006 1/2" 3mm
Duckbill Shambaugh Derlacki Raspatory curved sharp

Prepares cartilage implant material.

gS 26.9010 5/8" x \(23 / 4^{\prime \prime} \times 11 / 4^{\prime \prime} \times 1\) 1/4", crusher gS 26.90113 1/2", 15mm, slide

Cottle Cartilage Crusher
\(\qquad\)

gS 26.2100 small gS 26.2120 medium gS 26.2140 large

Vienna Speculum 5 3/4" with spring

\(\stackrel{\circ}{\sim}\)
gS 26.8095 4 3/4"
gS 26.8097 5 1/2"
Sluder-Jansen Mouth Gag (Molt) with silicone tip protectors


\section*{did you know... ?}

Armand Trousseau was a French internist who was born in Tours in 1801, and received his doctorate in Paris in 1825. He made his early reputation on yellow fever and laryngeal phthisis, a disease characterized by the wasting away or atrophy of the larynx. He was the first to undertake a tracheotomy in 1831 and popularized this intervention in the treatment of croup, usually due to diphtheria. He was also the first to aspirate the pleural cavity in 1843 and gave the first description of haemochromatosis, a disease in which too much iron builds up in your body.

In 1839 Dr. Trosseau was appointed physician to the Hospital Ste Antoine in Paris, and later moved to physician-in-chief at the Hotel-Dieu in 1850. In 1861 he published a two volume text, Clinique Medicale de l'Hotel-Dieu which contained many accurate descriptions of common childhood diseases, such as scarlet fever, measles, rubella, mumps, diphtheria, whooping cough, cholera infantum and neonatal syphilis. He passed away in 1867.

Useful in oculoplastic procedures for the lacrimal duct.
gS 27.9700 0000/000
gS 27.9702 00/0
gS \(27.9704 \quad 0 / 1\)
gS 27.9706 1/2
gS \(27.9708 \quad 2 / 3\)
gS \(27.9710 \quad 3 / 4\)
gS 27.9712 4/5
gS \(27.97145 / 6\)
gS 27.9716 6/7
gS 27.9718 7/8

\section*{Bowman Probe}

5"
double ended


Useful in removing a corneal foreign body.
gS 27.7331 4 3/4"
Ellis Foreign Body Spud 1.2 mm blade


Useful in removing a corneal foreign body.
gS 27.7325 4 3/4"
Davis Foreign Body Spud 0.8 mm blade

Useful to remove debris from cornea or sclera.

Reversible screw handle allows the spud and needle to be placed on either end and inverted inside handle when not in use.
gS \(27.754643 / 4 "\)
Dix Spud and Needle double ended invertable
\begin{tabular}{|c|c|}
\hline \(\begin{array}{ccc}\bullet . & \bullet \\ 0.5 & 1.0 & 1.5\end{array}\) & \(1.8 \quad 2.0\) \\
\hline - & \\
\hline \(\begin{array}{llll}2.5 & 3.0 & 3.5\end{array}\) & 4.0 \\
\hline gS 27.7605 & 0.5 mm \\
\hline gS 27.7610 & 1.0 mm \\
\hline gS 27.7615 & 1.5 mm \\
\hline gS 27.7618 & 1.8 mm \\
\hline gS 27.7620 & 2.0 mm \\
\hline gS 27.7625 & 2.5 mm \\
\hline gS 27.7630 & 3.0 mm \\
\hline gS 27.7635 & 3.5 mm \\
\hline gS 27.7640 & 4.0 mm \\
\hline gS 27.7645 & 4.5 mm \\
\hline
\end{tabular}

Meyerhoefer Curette 5"



Useful for an evisceration to remove contents of the eye from the orbit, while leaving the scleral shell and extraocular muscles intact.
gS 27.7706 \#0, 6 mm
gS 27.7707 \#1, 7 mm
gS 27.7708 \#2, 8 mm
gS 27.7710 \#3, 10 mm
gS 27.7711 \#4, 11mm
gS 27.7712 \#5, 12 mm

\section*{Bunge Evisceration Spoon \\ 5"}

\section*{did you know...?}

The Meyerhoefer Curette shown on this page is also referred to as the Meyerhoefer Chalazion Curette. A chalazion, also known as a meibomian gland lipogranuloma, is a cyst in the eyelid that is caused by inflammation of a blocked meibomian gland, usually on the upper eyelid. Chalazia differ from styes in that they are subacute and usually painless nodules. They may become acutely inflamed, but usually point inside the lid rather than on the lid margin. Depending on the chalazion's texture, the excision procedure varies. While fluid matter can be removed in a minimally invasive manner, hardened matter can require the need for a larger incision to be made so the matter can be scraped out.


Useful in exposing a chalazion or other cysts of the eyelid. Ring blade surrounds the cyst and helps to evert eyelid when tightened.
gS 27.7000 3 3/4"
Hunt Chalazion Forceps
12 mm ring ID
set screw


\[
\begin{array}{ll}
\text { gS } 27.1501 & 0.12 \mathrm{~mm} \\
\text { gS } 27.1503 & 0.3 \mathrm{~mm} \\
\text { gS } 27.1505 & 0.5 \mathrm{~mm} \\
\text { gS } 27.1507 & 1.0 \mathrm{~mm} \\
\text { gS } 27.1509 & 1.5 \mathrm{~mm}
\end{array}
\]

Castroviejo Suture Forceps 4"
with tying platform, \(1 \times 2\) teeth

gS 27.5260 serr 0.5 mm gS 27.5262 serr 0.8 mm gS \(27.52641 \times 20.5 \mathrm{~mm}\) gS \(27.52661 \times 20.8 \mathrm{~mm}\)

Bishop Harmon Forceps 3 1/2"
gS 29.0022 4 3/4"
Vasectomy Forceps
\(\qquad\)

gS \(29.0020 \quad 51 / \mathbf{2 "}^{\prime \prime}\)
Vasectomy Forceps 3 mm curved end


ํํㄴ
gS \(29.465041 / \mathbf{4 "}^{\prime \prime}\)
Umbilical Scissors

gS \(29.0050 \quad 7\) 3/4"
Adair Breast Clamp curved
gS 29.4310 8"
Snook Hook
gS 29.06756 3/4"
Doyen Myoma Screw with T-handle


\section*{did you know... ?}

OB/GYN is an abbreviation for obstetrics/gynecology.
An obstetrician is a physician who has successfully completed specialized education and training in the management of pregnancy, labor, and puerperium (the time-period directly following childbirth).

A gynecologist is a physician who has a successfully completed specialized education and training in the health of the female reproductive system, including the diagnosis and treatment of disorders and diseases. Typically, the education and training for both fields occurs concurrently.

An obstetrician/gynecologist is a physician specialist who provides medical and surgical care to women and has particular expertise in pregnancy, childbirth, and disorders of the reproductive system. This includes preventative care, prenatal care, detection of sexually transmitted diseases, Pap test screening, and family planning.

There are four recognized subspecialties in this field:

\section*{1. Gynecologic Oncology}

Concerned with consultation and comprehensive management of patients with gynecologic cancer. Requires knowledge of major cancer treatments, diagnosis, and complications of oncology.

\section*{2. Maternal/Fetal Medicine}

Concerned with the care and consultation of patients with complications of pregnancy. Requires knowledge of obstetrics, medical and surgical complications of mother and fetus, current approaches to diagnosis and treatment, and newborn adaptation.
3. Reproductive Endocrinology and Infertility Concerned with the management of complex problems relating to reproductive endocrinology and infertility. Requires knowledge of diagnosis and treatment of endocrinology and infertility disorders.

\section*{4. Urogynecology/Reconstructive Pelvic Surgery} Concerned with the health of the female urinary tract and surgery as a treatment. Requires knowledge of complex benign pelvic conditions, lower urinary tract disorders, pelvic floor dysfunction, and reconstructive pelvic.


Triangular handle instruments

\section*{30/2 - arthroscopy}
\(\varnothing=\) diameter

gS 30.0807
Smillie Meniscotome
7 mm straight

gS 30.0900 Cartilage File fine cross serrated

gS 30.2033
Curette
3 mm ,
\(30^{\circ}\) angle

gS 30.2105
Ring Curette \(\varnothing 5 \mathrm{~mm}\), \(15^{\circ}\) angle

gS 30.2303
Ring Curette \(\varnothing 3 \mathrm{~mm}\), \(30^{\circ}\) angle

gS 30.2307
Ring Curette
\(\varnothing 7 \mathrm{~mm}\),
\(30^{\circ}\) angle

Triangular handle instruments
\(91 / 2^{\prime \prime}\)
\(\varnothing=\) diameter
gS 30.3102
Mini Basket Forceps
4" shaft, Ø 2mm 1 mm bite

Mini Biopsy Forceps
4" shaft, Ø 2mm
2 mm bite


\section*{30/4 - arthroscopy}

\section*{\(\varnothing=\) diameter}
gS 30.3212
Mini Biopsy Forceps
4" shaft, Ø 2mm
2 mm cup, serrated

top \& bottom jaw


5" shaft, Ø 3.4 mm
\(\varnothing=\) diameter

jaw

gS 30.3335

\section*{Grasping Forceps}
\(51 / 4\) " shaft, \(\varnothing 3.4 \mathrm{~mm}\)
3.4 mm alligator jaw, rachet


Mini Scissors
4" shaft, Ø 2mm downward cutting

\section*{30/6 - arthroscopy}
\(\varnothing=\) diameter

gS 30.4234
Hook Scissors
5" shaft, Ø 0.4 mm lower blade serrated






An ARCH Medical Solutions Company

\section*{did you know... ?}

The word arthroscopy comes from two Greek words, "arthro" (joint) and "skopein" (to look). The term literally means "to look within the joint."

Arthroscopy was pioneered in the early 1950s by Dr. Masaki Watanabe of Japan to perform minimally invasive cartilage surgery and reconstructions of torn ligaments. It is a minimally invasive surgical procedure in which an examination and sometimes treatment of damage of the interior of a joint is performed using an arthroscope, a type of endoscope that is inserted into the joint through a small incision. Arthroscopic procedures can be performed either to evaluate or to treat many orthopedic conditions. The surgical instruments used are smaller than traditional instruments. Surgeons view the joint area on a video monitor, and can diagnose and repair torn joint tissue, such as ligaments and menisci or cartilage.

The advantage of arthroscopy over traditional open surgery is that the joint does not have to be opened up fully. Instead, for knee arthroscopy for example, only two small incisions are made - one for the arthroscope and one for the surgical instruments to be used in the knee cavity to fully remove the knee cap. This reduces recovery time and may increase the rate of surgical success due to less trauma to the connective tissue. There is also less scarring because of the smaller incisions. Irrigation fluid is used to distend the joint and make a surgical space. Sometimes this fluid leaks into the surrounding soft tissue causing extravasation and edema.

The joints that are most commonly treated by arthroscopy are the knee, shoulder, elbow, wrist, ankle, foot, and hip. Some uses include:

Knee: treating meniscus injury, reconstruction of the anterior cruciate ligament and for cartilage microfracturing.

Shoulder: treating various diseases of the shoulder including subacromial impingement, acromioclavicular osteoarthritis, rotator cuff tears, frozen shoulder (adhesive capsulitis), chronic tendonitis and partial tears of the long biceps tendon, SLAP lesions (superior labral tear from anterior to posterior) and shoulder instability.

Elbow: treating painful symptoms of many problems that damage the cartilage surfaces and other soft tissues surrounding the joint. Elbow arthroscopy may also be recommended to remove loose pieces of bone and cartilage, or release scar tissue that is blocking motion. Common procedures include:
- Treatment of tennis elbow (lateral epicondylitis)
- Removal of loose bodies (loose cartilage and bone fragments)
- Release of scar tissue to improve range of motion
- Treatment of osteoarthritis (wear and tear arthritis)
- Treatment of rheumatoid arthritis (inflammatory arthritis)
- Treatment of osteochondritis dissecans (activity related damage to the capitellum portion of the humerus seen in throwers or gymnasts)

Wrist: treating symptoms of repetitive strain injury, fractures of the wrist and torn or damaged ligaments. It can also be used to ascertain joint damage caused by arthritis.

Arthroscopic spinal procedures allow a surgeon to access and treat a variety of spinal conditions with minimal damage to surrounding tissues, including spinal disc herniation and degenerative discs, spinal deformity, tumors, and general spine trauma.


Round Dissectors, angled
\(\begin{array}{ll}\text { gS } 33.0201 & 1 \mathrm{~mm} \\ \text { gS } 33.0202 & 2 \mathrm{~mm} \\ \text { gS } 33.0203 & 3 \mathrm{~mm}\end{array}\)

\section*{Elevators}
gS 33.0210 curved
gS 33.0211 angled
Spatula Dissectors, angled
\#
gS 33.02166 small
gS 33.02177 medium
gS 33.02188 large
Hooks, angled
gS \(33.022090^{\circ}\) sharp
gS \(33.022190^{\circ}\) blunt
gS \(33.022245^{\circ}\) sharp
Needle
gS 33.0225 straight sharp
Curettes, 1 mm
gS 33.0227 straight
gS 33.0228 angled
\begin{tabular}{lll}
\multicolumn{2}{l}{ Ball Dissectors } & \\
gS 33.0230 & straight & 0.8 mm \\
gS 33.0233 & \(90^{\circ}\) & 3 mm \\
gS 33.0235 & \(90^{\circ}\) & 5 mm \\
gS 33.0237 & \(40^{\circ}\) & 4 mm \\
gS 33.0238 & \(40^{\circ}\) & 8 mm
\end{tabular}

Rhoton-Style Micro Dissector Instruments
7 1/2"

\section*{33/2 - micro}

Black aluminum offset handle is designed to provide increased field visualization while providing greater precision and control during microdiscectomy surgery. Rounded corners and flat sides allow for easy rotation with control, stable power and leverage to help reduce unwanted torque.

Each instrument is marked on front of handle for easy identification.

See side view picture of gS 33.4103 on right for tip orientation.


Microdiscectomy Cervical Curette and Cortical Bone Cutter
8 1/2"
offset aluminum handle, black
gS 33.4136 Micro nerve hook, 1.8 mm
gS 33.4137 Ultra micro nerve hook, 1.5 mm
gS 33.4139 Bone waxer, 2.0 mm
Microdiscectomy Cervical Instruments 8 1/2"
offset aluminum handle, black

gS 33.4136

gS 33.4137

gS 33.4103


Anodized aluminum offset handle is designed to provide increased field visualization while providing greater precision and control during microdiscectomy surgery. Round handle has fingertip indentations to help allow for easy rotation with control.

See side view picture of gS 33.5003 on right for tip orientation.


Microdiscectomy Cervical Curette
\(10 "\)
offset aluminum handle



See side view picture of gS 33.4202 on right for tip orientation.

\begin{tabular}{ccccccc} 
FS & FA & FD & BS & BA & BD & \(\#\) \\
gS 33.4200 & gS 33.4210 & gS 33.4220 & gS 33.4230 & gS 33.4240 & gS 33.4250 & 0 \\
gS 33.4201 & gS 33.4211 & gS 33.4221 & gS 33.4231 & gS 33.4241 & gS 33.4251 & 1 \\
gS 33.4202 & gS 33.4212 & gS 33.4222 & gS 33.4232 & gS 33.4242 & gS 33.4252 & 2
\end{tabular}

\section*{Microdiscectomy Lumbar Curette}

9 1/2"
offset aluminum handle, black


gS 34.9260 4 3/4"
Hohmann Retractor
with finger ring 15 mm

gS 36.9270 6"
Hohmann Retractor 15 mm
\(\qquad\)


ल
c
ले


\section*{34-37/2 - hand-held retractors}

6 mm


17 mm


8 mm


35 mm
\(45^{\circ}\) drop
gS 36.9340 6" \(6 \mathrm{~mm} \quad 17 \mathrm{~mm}\)
gS \(36.9345 \quad 51 / 2^{\prime \prime} \quad 6 \mathrm{~mm} \quad 35 \mathrm{~mm}\)
gS \(36.9350 \quad 6 " \quad 8 \mathrm{~mm} \quad 17 \mathrm{~mm}\)
gS \(36.9355 \quad 51 / 2^{\prime \prime} \quad 8 \mathrm{~mm} \quad 35 \mathrm{~mm}\)
gRetractor, Hohmann Mini bent handle

small

medium

large

x-large
gS 37.1006 small 6 mm and 10 mm
gS 37.1009 medium 9 mm and 15 mm
gS 37.1011 large 11 mm and 20 mm
gS \(37.1014 x\)-large 14 mm and 25 mm

\section*{gSilicone Brain Spatula}

7"
malleable copper, silicone coated, black
```

gS 37.0042 1/4"
gS 37.0043 3/8"
gS 37.0044 1/2"
gS 37.0045 5/8"
gS 37.0046 3/4"
gS 37.0047 1"
gS 37.0048 11/4"
gS 37.0049 1 1/2"

```

Davis Brain Spatula 7"
malleable, stainless steel
\begin{tabular}{lll} 
gS 36.8518 & \(6 "\) & \(1 / 4^{\prime \prime}\) \\
gS 36.8520 & \(66^{\prime \prime}\) & \(1 / 2^{\prime \prime}\) \\
gS 36.8522 & \(6^{\prime \prime}\) & \(3 / 4^{\prime \prime}\) \\
gS 36.8524 & \(63 / 4^{\prime \prime}\) & \(5 / 8^{\prime \prime}\) \\
gS 36.8550 & \(71 / 2^{\prime \prime}\) & \(1 "\) \\
gS 36.8560 & \(8^{\prime \prime}\) & \(1 / 4^{\prime \prime}\) \\
gS 36.8561 & \(8^{\prime \prime}\) & \(3 / 8^{\prime \prime}\) \\
gS 36.8563 & \(8^{\prime \prime}\) & \(1 / 2^{\prime \prime}\) \\
gS 36.8564 & \(8^{\prime \prime}\) & \(5 / 8^{\prime \prime}\) \\
gS 36.8565 & \(8^{\prime \prime}\) & \(3 / 4^{\prime \prime}\) \\
gS 36.8660 & \(13^{\prime \prime}\) & \(3 / 4^{\prime \prime}\) \\
gS 36.8680 & \(13^{\prime \prime}\) & \(1 "\) \\
gS 36.8700 & \(13^{\prime \prime}\) & \(11 / 4^{\prime \prime}\) \\
gS 36.8720 & \(13^{\prime \prime}\) & \(11 / 2^{\prime \prime}\) \\
gS 36.8722 & \(13^{\prime \prime}\) & \(13 / 4 "\) \\
gS 36.8760 & \(13^{\prime \prime}\) & \(2 "\) \\
gS 36.8762 & \(13^{\prime \prime}\) & \(21 / 2^{\prime \prime}\) \\
gS 36.8764 & \(13^{\prime \prime}\) & \(3 "\)
\end{tabular}

Ribbon Retractor malleable stainless steel

width \(x\) depth
gS \(34.19344 \mathrm{~mm} \times 14 \mathrm{~mm}\)
\(7 \mathrm{~mm} \times 22 \mathrm{~mm}\)
gS \(34.19355 \mathrm{~mm} \times 19 \mathrm{~mm}\) \(8 \mathrm{~mm} \times 22 \mathrm{~mm}\)

Crile Retractor 4"
double ended


\section*{34-37/4 - hand-held retractors}
gS \(36.6140 \quad 51 / 4 "\)
"S" Retractor
double ended
5 mm and 13 mm

gS \(34.1950 \quad 51 / \mathbf{2 "}^{\prime \prime}\)
Rose Retractor
11.5 mm width \(\times 12 \mathrm{~mm}\) depth 10 mm width \(\times 14.5 \mathrm{~mm}\) depth

gS \(36.6150 \quad 41 / 4^{\prime \prime} \quad 8 \mathrm{~mm}\) and 11 mm gS 36.6160 \(53 / 4 " 6 \mathrm{~mm}\) and 9 mm

Luer "S" Retractor double ended

gS \(34.17606 "\)
Davis Retractor
6 mm width \(\times 17 \mathrm{~mm}\) depth 9 mm width \(\times 20 \mathrm{~mm}\) depth


\section*{34-37/6 - hand-held retractors}


Freeman Face Lift Retractor 7" straight
4 sharp prongs

gS 34.343737 mm offset prongs
Freeman Face Lift Retractor
7" curved backward 4 sharp prongs


\section*{34-37/8 - hand-held retractors}



\section*{Lahey Retractor}

6 mm width \(\times 26 \mathrm{~mm}\) depth

width x depth
gS \(36.21281 / 4^{\prime \prime} \times 1^{\prime \prime}\)
gS \(36.21303 / 8^{\prime \prime} \times 11 / 8^{\prime \prime}\)
gS 36.2132 1/2" x 1 1/8"
gS \(36.21345 / 8^{\prime \prime} \times 1\) 1/8"
gS \(36.21361 / 2^{\prime \prime} \times 15 / 8^{\prime \prime}\)
gS \(36.21385 / 8^{\prime \prime} \times 15 / 8^{\prime \prime}\)
Langenbeck Retractor 8 1/2" ring handle


\[
\begin{array}{ll}
\text { gS } 36.6436 & 6 \mathrm{~mm} \\
\text { gS } 36.6438 & 8 \mathrm{~mm} \\
\text { gS } 36.6440 & 10 \mathrm{~mm}
\end{array}
\]
Caspar Nerve Root Retractor 9 1/2" malleable
gS \(36.641081 / \mathbf{2 " ~}^{\prime \prime}\)

\section*{Campbell Nerve Root} Retractor
10 mm


An ARCH Medical Solutions Company



\section*{34-37/14 - hand-held retractors}

gS \(36.5820 \quad 71 / \mathbf{" I}^{\prime \prime}\)
Parker Retractor double ended set of 2

gS \(36.4880 \quad 6 "\)
Mayo-Collins Retractor double ended set of 2

gS \(36.59406 "\)
Parker-Mott Retractor double ended set of 2


OAL \(=\) Overall Length

Set includes 6 retractors, one each of the following sizes:
\begin{tabular}{llr} 
& Blade & Blade \\
OAL & Depth & Width \\
\(9 "\) & 114 mm and 71 mm & 19 mm \\
\(83 / 4^{\prime \prime}\) & 102 mm and 65 mm & 19 mm \\
\(81 / 2^{\prime \prime}\) & 91 mm and 56 mm & 16 mm \\
\(81 / 4^{\prime \prime}\) & 83 mm and 48 mm & 16 mm \\
\(8 "\) & 75 mm and 42 mm & 13 mm \\
\(73 / 4 "\) & 68 mm and 35 mm & 13 mm \\
& & \\
5" clip (holds retractors) &
\end{tabular}

gS 36.6100 9"

\section*{Sofield Retractor}
double ended set of 6 with clip
gS \(36.4720 \quad 81 / 2^{\prime \prime}\)
US Army Navy Retractor double ended set of 2

sharp
prongs
gS 35.3121
gS 35.3131
gS 35.31414
gS 35.31616
Murphy Retractor
7 3/4"
with side wings
gS \(36.3120 \quad 91 / 2^{\prime \prime}\) small gS \(36.3140 \quad 10\) 1/2" large

Richardson Eastman Retractor

blunt
prongs
gS \(35.3122 \quad 2\)
gS 35.31323
gS 35.31424
gS 35.31626
gS \(36.172471 / \mathbf{2 "}^{\prime \prime}\)
Israel Retractor
4 blunt prongs with side wings

prongs
gS \(36.1780 \quad 3\)
gS 36.18004
gS 36.18025
gS 36.18046
Israel Retractor
9 1/2", blunt prongs ring handle

Retractor
4 blunt prongs ring handle

gS \(36.40619^{\prime \prime}\)
Volkmann Retractor
6 sharp prongs
ring handle
gSource.
gS \(34.4380 \quad 10 " \quad 38 \mathrm{~mm}\)
Mueller Rake Retractor 8 sharp prongs ring handle

\begin{tabular}{ll} 
& sharp \\
& prongs \\
gS 36.3540 & 1 \\
gS 36.3580 & 2 \\
gS 36.3620 & 3 \\
gS 36.3640 & 4 \\
gS 36.3660 & 6 \\
gS 36.3670 & 8
\end{tabular}

Volkmann Retractor 8 1/2" ring handle

width \(x\) depth
gS 36.3842
gS 36.3844
gS 36.3846
gS 36.3848
Deep Rake Retractor 11"
4 blunt prongs
blunt prongs
gS 36.3676
gS 36.36802
gS 36.3720
gS 36.37404
gS 36.37606
gS 36.37808
2
3
4
6
8

\begin{tabular}{lll} 
& & \multicolumn{1}{l}{ width \(\times\) depth } \\
gS 36.3160 & \(91 / 2^{\prime \prime}\) & \(11 / 2^{\prime \prime} \times 2\) " \\
gS 36.3180 & \(91 / 2^{\prime \prime}\) & \(2^{\prime \prime} \times 21 / 2^{\prime \prime}\) \\
gS 36.3200 & \(10 "\) & \(21 / 2^{\prime \prime} \times 3\) " \\
gS 36.3220 & \(101 / 2^{\prime \prime}\) & \(3^{\prime \prime} \quad \times 31 / 2^{\prime \prime}\)
\end{tabular}

Kelly Retractor
loop handle
width \(\times\) depth
gS 36.3000 91/2" \(3 / 4^{\prime \prime} \times 1\) "
gS 36.3020 9 1/2" \(\mathbf{1 " ~}^{\prime \prime} \times 11 / 4^{\prime \prime}\)
gS 36.3040 \(91 / 2^{\prime \prime} 11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}\)
gS 36.3060 91/2" 3/4" x 2"
gS 36.3050 10" \(13 / 4 " \times 25 / 8^{\prime \prime}\)
Richardson Retractor grip handle

\section*{34-37/20 - hand-held retractors}
tip details
not to scal not to scale


gS 36.2322

width \(x\) depth
gS \(36.2320 \quad 91 / 2^{\prime \prime}\)
gS 36.2322 10" \(^{\prime \prime}\)
\(22 \mathrm{~mm} \times 82 \mathrm{~mm}\)

Coryllos Retractor
ring handle

width \(x\) depth
gS 36.2420
gS 36.2422
gS 36.2424
gS 36.2426
gS 36.2428
\(20 \mathrm{~mm} \times 82 \mathrm{~mm}\)
\(20 \mathrm{~mm} \times 102 \mathrm{~mm}\)
\(25 \mathrm{~mm} \times 122 \mathrm{~mm}\)
\(25 \mathrm{~mm} \times 140 \mathrm{~mm}\)
\(30 \mathrm{~mm} \times 162 \mathrm{~mm}\)
gS \(\mathbf{3 6 . 2 4 3 0} 30 \mathrm{~mm} \times 182 \mathrm{~mm}\)

\section*{Brunner Retractor}

10"
ring handle

WL = Working Length


Biocompatible silicone handle helps to prevent slippage and provide a secure grip.
gS \(36.3530 \quad 40 \mathrm{~mm}\)
gS 36.353262 mm
gRetractor, Harrington
12 1/2", 5" WL
\(5 "\) blue silicone grip handle

Commonly referred to as a "sweetheart" retractor due to shape of the working end. Useful in abdominal cavity.
width \(x\) depth
gS 36.3512 9" 1" \(\times 3\) "
gS 36.3514 13" \(11 / 2^{\prime \prime} \times 5\) "
gS 36.3516 13" \(21 / 2^{\prime \prime} \times 5\) "
gS 36.3518 13" \(21 / 2^{\prime \prime} \times 7\) "

\section*{Harrington Retractor}
grip handle


\(\qquad\)

Designed to retract the left renal vein during procedures on abdominal aorta or renal arteries. Gently curved distal tip for atraumatic control.
\begin{tabular}{lll} 
& & \multicolumn{1}{c}{ width x depth } \\
gS 36.3504 & 12 " & \(1^{\prime \prime} \times 4\) " \\
gS 36.3507 & 12 & \(1 / 2^{\prime \prime}\) \\
\(1^{\prime \prime} \times 7\) "
\end{tabular}

Wylie Renal Vein Retractor
grip handle

> Designed to retract the left renal vein during procedures on abdominal aorta or renal arteries. Gently curved distal tip for atraumatic control.

width x depth
gS \(36.34701^{\prime \prime} \times 7\) "
gS 36.3480 1" \(\times 10\) "
Wylie Renal Vein Retractor
13"
grip handle with horn
gS 36.3236 8" \(^{\prime \prime}\)
Deaver Pediatric Retractor 5/8"

gSource.
gS \(36.32859^{\prime \prime}\)
Deaver Retractor
\(1 "\)
gS \(36.32487^{\prime \prime}\)
Deaver Retractor 3/4"
\(\qquad\)


Deaver Retractor 7/8"

gS \(36.3291 \quad 10\) 1/2"
Deaver Retractor 1"
\(\qquad\)
gS \(36.3293{ }^{12 "}\)
Deaver Retractor \(11 / 2^{\prime \prime}\)
gSource.

gS 36.3292 12"
Deaver Retractor
1"
\(\qquad\)

gS 36.3294 13"
Deaver Retractor
\(1 "\)
\(\qquad\)


gS \(36.3298{ }^{12 "}\)
Deaver Retractor 2"

gS 36.3300 10"
gS 36.3320 12"
gS 36.3340 13"
Deaver Retractor
1"
grip handle

gS \(36.3296{ }^{12 \prime \prime}\)
Deaver Retractor 3"

gSource.

Useful in total shoulder arthroplasty and open rotator cuff procedures for retracting the deltoid muscle.
gS 36.9362 8"
gRetractor
18 mm , blunt
\(60^{\circ}\)
gSource.

Useful to gain exposure when placed between the glenoid and humeral head.

The two prongs wrap around the posterior rim to help distribute force to the glenoid neck.
gS \(36.9750{ }^{7 \prime}\)
Humeral Head Retractor 2 blunt prongs strong curve




Useful for retracting the humeral head while exposing the glenoid.
\begin{tabular}{ll} 
& width \(\times\) depth \\
gS 36.0000 & \(32 \mathrm{~mm} \times 81 \mathrm{~mm}\) \\
gS 36.0001 & \(38 \mathrm{~mm} \times 81 \mathrm{~mm}\)
\end{tabular}

\section*{Fukuda Style Retractor}

7 1/2"
T-handle

Useful for retracting the humeral head while exposing the glenoid.

Once seated in the gleno-humeral joint, the oval ring retracts the humeral head to allow exposure of the glenoid rim and its articular surface.

Serrations around ring help to improve traction.
gS \(36.0030 \quad 30 \mathrm{~mm}\)
gS 36.003535 mm
Fukuda-Kujat Style Humeral Head Retractor


9 ", with T-handle



Convex teeth are seated in the glenoid rim while the curve helps to provide optimal visibility to the site.
gS \(36.979081 / \mathbf{2 " ~}^{\prime \prime}\)

\section*{Glenoid Neck Retractor} 18mm sharp teeth
n

Useful during osteotomy of the humeral head and approaches to the glenoid. Provides one finger retraction and contours to allow teeth to fit behind the glenoid, retracting tissue for easy access to the glenoid.
gS 36.9793 10"
Posterior Glenoid Neck Retractor
30 mm , sharp teeth


\section*{34-37/30 - hand-held retractors}

Useful to medially retract the subscapularis when prongs are securely seated in the glenoid neck. Also useful in securing the medial flap during capsule repair.
\(\begin{array}{lll}\text { gS } 36.9946 & 10 " & 23 \mathrm{~mm} \\ \text { gS } 36.9952 & 11 " & 15 \mathrm{~mm}\end{array}\)
Kolbel Glenoid Retractor
2 sharp prongs

Useful to medially retract the subscapularis when prongs are securely seated in the glenoid neck. Also useful in securing the medial flap during capsule repair.
\begin{tabular}{llll} 
& & & prongs \\
gS 36.9950 & \(11^{\prime \prime}\) & 15 mm & 1 \\
gS 36.9956 & \(11^{\prime \prime}\) & 23 mm & 1 \\
gS 36.9962 & 11 & \(1 / 2^{\prime \prime}\) & 15 mm \\
gS 36.9973 & 11 & \(1 / 2^{\prime \prime}\) & 23 mm \\
gS & 2
\end{tabular}

Kolbel Glenoid Retractor
sharp prongs


Useful for retracting the deltoid and exposing the humeral head.
gS 36.973842 mm
gS \(36.9740 \quad 55 \mathrm{~mm}\)

\section*{Browne-Deltoid Retractor}

\section*{11"}

T-handle with ring
gS 36.4788 13mm
gS \(36.4790 \quad 18 \mathrm{~mm}\)
gS \(36.4791 \quad 20 \mathrm{~mm}\) gS \(\mathbf{3 6 . 4 7 9 2} 23 \mathrm{~mm}\)

Blade Retractor
7 1/2"
angled

gS \(35.3000 \quad 5^{\prime \prime}\)
Smillie Retractor
13 mm width \(\times 18 \mathrm{~mm}\) depth down curved, T-handle
gSource.


Smillie Retractor
13 mm width \(\times 55 \mathrm{~mm}\) depth up curved, T-handle




\section*{Z Knee Retractor}
(Doane Retractor)
6"
gS \(37.30607 "\)
Blount Knee Retractor 7mm
\(\qquad\)
gS \(37.3020 \quad 101 / 2^{\prime \prime}\)
Blount Retractor
37mm
gSource.




Useful in knee procedures.
gS \(36.9127 \quad 73 / 4 "\)
Tibial Retractor
5 mm
rounded end



\section*{34-37/36 - hand-held retractors}

Useful in protecting the lateral collateral ligament and exposing the proximal tibia.
gS \(36.9110 \quad 91 / 2^{\prime \prime}\)


\section*{Collateral Soft Tissue Retractor}

45 mm
11 mm 2 prongs blunt

Useful in retracting the tibia away from the femur.
gS \(36.9119 \quad 10\) 1/2"
PCL (Posterior Cruciate Ligament) Retractor
19mm
11 mm 2 prongs blunt



WL = Working Length


gS 37.3010 blunt
gS 37.3011 sharp
Ranawat Knee Retractor
9 1/2"
\(17 \mathrm{~mm}, 5\) 1/4" WL, \(90^{\circ}\)

width x depth
gS 36.1580 3/4" \(\times 2\) "
gS 36.1590 1" \(^{\prime \prime} \times 2\) "
gS \(36.16001^{\prime \prime} \times 3^{\prime \prime}\) gS \(36.16101^{\prime \prime} \times 4 "\)

Hibbs Retractor
9 1/2"
sharp teeth

gS \(36.9800 \quad 13 / 4^{\prime \prime}\)
gS \(36.9840 \quad 21 / \mathbf{2 " ~}^{\prime \prime}\)
Bennett Retractor
10"
grip handle

gS \(36.2508{ }^{8 \prime \prime}\)
gS \(36.251111 "^{\prime \prime}\)
gS 36.2514 14"
T-Handle Retractor
32 mm width \(\times 110 \mathrm{~mm}\) depth angled blade, blunt teeth
```

 width x depth
 gS 36.2580 9" 5/8" x 2 1/4"
gS 36.2620 9" 1" x 2 3/4"
gS 36.2640 91/2" 2" x 3 3/4"

```

Meyerding Retractor
with teeth, grip handle

Meyerding Retractor
\(3 / 4\) " width \(\times 6\) " depth with teeth

\section*{34-37/40 - hand-held retractors}

gS 37.3072 9" pointed smooth Aufranc Cobra Retractor 30mm grip handle

gS 37.3120

gS 37.3140

gS 37.3100

gS 37.3080
gS \(\mathbf{3 7 . 3 1 2 0}\) blunt smooth
gS 37.3140 pointed smooth
gS 37.3100 blunt serrated
gS 37.3080 pointed serrated
Aufranc Cobra Retractor
11 1/2", 32mm
grip handle
gS 37.3150 11" blunt smooth
Aufranc Cobra Retractor
32mm
grip handle


gS \(37.3160 \quad 11\) 1/2" blunt cross serrated
Aufranc Cobra Retractor
38mm grip handle

gS 37.3180 12" blunt cross serrated
gRetractor, Aufranc Cobra
40mm grip handle
gS \(37.2100 \quad 101 / 2^{\prime \prime}\)
Pelvic Retractor
1" blunt

gS 36.9920 12"
Murphy Bone Skid
\(\qquad\)

gS \(37.2210 \quad 111 / 2^{\prime \prime}\) with lip gS \(37.2212 \quad 13\) " with lip
gS \(37.2214 \quad 13\) " without lip
St. Mark's Pelvic Retractor angled blade grip handle

WL = Working Length

gS 36.9387 is useful for knee retraction due to narrow design.
gS 36.3990 is useful for retracting tissue at the margins of the joint in knee and hip arthroplasty. For optimal exposure, placement is made over the margins of the joint.
gS \(36.9387 \quad 19 \mathrm{~mm}\)
gS 36.939043 mm
gRetractor, Bent Hohmann
6 3/4"
\(43 / 4\) " WL, \(90^{\circ}\), rounded end

\section*{34-37/44 - hand-held retractors}

WL = Working Length



Bent Hohmann Retractor
70mm
\(7{ }^{\prime \prime}\) WL, \(90^{\circ}\), rounded end

\section*{gSource.}





gSource.


gSource.


gSource.




gSource.


Helps to provide increased visibility of the tendon sheath in trigger finger procedures. Also useful in other small incision procedures.
gS 38.5500 4 1/4" blunt
gRetractor, Trigger Finger 6.5 mm width \(\times 12 \mathrm{~mm}\) depth blade

gS 38.5195 4" blunt

\section*{Self Retaining Retractor} straight 6 mm width \(\times 12 \mathrm{~mm}\) depth blade
gS 38.5219 sharp
gS 38.5220 blunt
Jansen Retractor
(Mastoid) 4" \(3 \times 3\) prongs


WL = Working Length

gS 38.8793 3 1/4", 7.5mm gS \(38.87954^{\prime \prime}\), 9.5 mm
gRetractor, Johnson Neuroma
\(90^{\circ}\) angle, 1 1/4" WL


Useful in facilitating lateral column lengthening of the calcaneus.

Thru hole on blades allows for passing of 1.3 mm K-wire.
gS \(40.3490 \quad 3\) 3/4"
gSpreader, Calcaneal
6 mm outside serrated blades with thru hole \(11 / 4\) " opening

gSource.

gS 38.5300 \(41 / 2^{\prime \prime}\)
Schink Retractor smooth blades

gS \(38.549041 / \mathbf{2}^{\prime \prime}\)
Metatarsal Retractor
(Cox Metatarsal Spreader) serrated blades


Deep blades are useful in appendectomy procedures.
gS 38.5670 7"
Rigby Retractor
20mm width x 60mm depth smooth blunt blades

gSource.

gS 38.8810 ball tip, sharp gS 38.8830 blunt

\section*{Gelpi Retractor}

7 1/2"

\(\begin{array}{ll}\text { gS } 38.8780 & 41 / 2^{\prime \prime} \\ \text { gS } 38.8804 & 61 / 2 "\end{array}\)
Gelpi Retractor
sharp points angled, delicate

gSource.

WL = Working Length

38-40
gS \(40.8710{ }^{11 "}\)
Wiltse Gelpi Retractor
strong curve
\(1 \times 1\) sharp points


Useful in holding back muscle while retracting the hip capsule.
gS \(40.8670 \quad 73 / 4^{\prime \prime}\)
gRetractor, Deep Gelpi
4 1/2" WL, \(90^{\circ}\) angle
\(1 \times 1\) blunt points

WL = Working Length

\begin{tabular}{ll} 
& WL \\
gS 40.8608 & \(3 "\) \\
gS 40.8610 & \(4 "\) \\
gS 40.8612 & \(5 "\)
\end{tabular}

Deep Gelpi Retractor
10 1/2", \(90^{\circ}\) angle
\(1 \times 1\) blunt points, speedlock

Useful for the sacral or thoracic region of the spine.

\(3^{\prime \prime}\) WL, \(45^{\circ}\) angle \(1 \times 1\) blunt points, speedlock

\section*{38-40/8 - self-retaining retractors}

WL = Working Length

Useful for lateral posterior lumbar interbody fusion procedures in helping to retract past the transverse process. The wrench helps to provide extra torque to attain maximum exposure.

WL
gS \(40.85703^{\prime \prime}\)
gS 40.8572 4"
Deep Gelpi Lateral Retractor
10 1/2", \(90^{\circ}\) angle
\(1 \times 1\) blunt points, speedlock, wrench


Varying working lengths accommodate different patient sizes and are designed to apply limited pressure on tissue and muscle, helping to reduce tissue necrosis.

WL
gS 40.8618
gS \(40.8620{ }^{4 \prime \prime}\)
gS \(40.86225^{\prime \prime}\)
Deep Gelpi Retractor
10 1/2", \(90^{\circ}\) angle
\(1 \times 1\) blunt points, ratchet

WL = Working Length

\begin{tabular}{ll} 
& \\
gS 40.8632 & WL \\
2" \\
gS 40.8638 & \(31 / 2^{\prime \prime}\) \\
gS 40.8640 & \(4 "\) \\
gS 40.8642 & \(5 "\)
\end{tabular}

Deep Gelpi Retractor
10 1/2", \(90^{\circ}\) angle,
4 sharp prongs, speedlock

gS 40.8648 13"
Deep Gelpi Retractor
3 1/2" WL, \(45^{\circ}\) angle
4 sharp prongs, speedlock

gSource.

\section*{38-40/10 - self-retaining retractors}

\section*{38-40}


blunt
gS 38.5920 sharp
gS \(\mathbf{3 8 . 5 9 4 0}\) blunt
Weitlaner Retractor 4 1/2"
\(2 \times 3\) prongs

sharp
gS \(38.598051 / 2^{\prime \prime}\)
gS 38.6020 \(61 / 2^{\prime \prime}\)
gS 38.6040 8" \(^{\prime \prime}\) gS 38.6060 1/2"
blunt
gS \(38.618051 / \mathbf{2 " ~}^{\prime \prime}\)
gS \(38.622061 / \mathbf{2 " ~}^{\prime \prime}\)
gS 38.6240 8" \(^{\prime \prime}\)
gS 38.6260 1/2"
Weitlaner Retractor \(3 \times 4\) prongs


25 mm sharp


Handle is gently curved to conform to contour of skull. Non-obstructive design is also useful for hand and foot procedures.
gS 38.5816 sharp gS 38.5814 blunt

Scalp Contour Retractor
5 1/2"
\(3 \times 4\) prongs



Helps to facilitate bilateral exposure of soft tissue.
gS \(38.6350 \quad 51 / 4\) " sharp
gS 38.6360 6" sharp
gS 38.6362 6" blunt
Wullstein-Weitlaner Retractor \(3 \times 3\) prongs
gS 38.7276 \(5^{\prime \prime}\)
Schuknecht Retractor
\(3 \times 3\) sharp prongs
3" max opening

gS \(38.6280 \quad 6 "\)
Mollison Retractor \(4 \times 4\) sharp prongs
\(\qquad\)


gS \(40.544071 / \mathbf{2 "}^{\prime \prime}\)
Adson Retractor angled arms \(4 \times 4\) sharp prongs

gS \(40.544571 / \mathbf{2 " ~}^{\prime \prime}\)
Adson Retractor
angled \(35^{\circ} / 20^{\circ}\) arms \(4 \times 4\) sharp prongs


\section*{38-40/14 - self-retaining retractors}


right blade
left prong
\(20 \times 70 \mathrm{~mm}\)
\begin{tabular}{ll} 
left blade & width \(\times\) depth \\
gS 40.8350 & \(20 \mathrm{~mm} \times 50 \mathrm{~mm}\) \\
gS 40.8360 & \(20 \mathrm{~mm} \times 70 \mathrm{~mm}\) \\
& \\
right blade & width \(\times\) depth \\
gS 40.8352 & \(20 \mathrm{~mm} \times 50 \mathrm{~mm}\) \\
gS 40.8362 & \(20 \mathrm{~mm} \times 70 \mathrm{~mm}\)
\end{tabular}

Discectomy Retractor
7"
Low profile design features an interlocking prong and blade for easy insertion.

Useful during posterior cervical procedures and micro lumbar discectomies.

Toothed prong provides less trauma and helps to achieve a more stable hold.

left blade
gS 40.7350 gS 40.7360 gS 40.7370 gS 40.7380
right blade
gS 40.7352
gS 40.7362
gS 40.7372
gS 40.7382
width x depth
\(10 \mathrm{~mm} \times 50 \mathrm{~mm}\)
\(10 \mathrm{~mm} \times 70 \mathrm{~mm}\)
\(20 \mathrm{~mm} \times 50 \mathrm{~mm}\)
\(20 \mathrm{~mm} \times 70 \mathrm{~mm}\)
width \(x\) depth
\(10 \mathrm{~mm} \times 50 \mathrm{~mm}\)
\(10 \mathrm{~mm} \times 70 \mathrm{~mm}\)
\(20 \mathrm{~mm} \times 50 \mathrm{~mm}\)
\(20 \mathrm{~mm} \times 70 \mathrm{~mm}\)
Williams Discectomy Retractor
7"

sharp \(51 / 2^{\prime \prime}\)
\begin{tabular}{lll} 
& sharp & width \(\times\) depth \\
gS 40.6500 & \(51 / 2^{\prime \prime}\) & \(20 \mathrm{~mm} \times 15 \mathrm{~mm}\) \\
gS 40.6320 & \(61 / 2^{\prime \prime}\) & \(20 \mathrm{~mm} \times 15 \mathrm{~mm}\) \\
gS 40.6410 & \(81 / 2^{\prime \prime}\) & \(22 \mathrm{~mm} \times 17 \mathrm{~mm}\) \\
gS 40.6420 & \(91 / 2^{\prime \prime}\) & \(22 \mathrm{~mm} \times 24 \mathrm{~mm}\) \\
& & \\
& blunt & \\
gS 40.6502 & \(51 / 2^{\prime \prime}\) & \(20 \mathrm{~mm} \times 15 \mathrm{~mm}\) \\
gS 40.6504 & \(61 / 2^{\prime \prime}\) & \(20 \mathrm{~mm} \times 15 \mathrm{~mm}\) \\
gS 40.6506 & \(81 / 2^{\prime \prime}\) & \(22 \mathrm{~mm} \times 17 \mathrm{~mm}\) \\
gS 40.6508 & \(91 / 2^{\prime \prime}\) & \(22 \mathrm{~mm} \times 24 \mathrm{~mm}\)
\end{tabular}

\(81 / 2^{\prime \prime}\)

\(91 / 2^{\prime \prime}\)

\section*{Beckman-Weitlaner Retractor}
hinged arms
\(3 \times 4\) prongs


gS 40.5900
sharp width \(x\) depth
gS 40.5900 gS 40.5860
-
1 " x \(13 / 4\) "
blunt width \(x\) depth
gS 40.5902
gS 40.5880

\section*{Beckman-Adson Retractor}

12" hinged arms
\(4 \times 4\) prongs


gS \(40.5820 \quad 121 / 2^{\prime \prime}\)
Adson Retractor
hinged arms \(4 \times 5\) blunt prongs


Helps to facilitate the introduction of deep retractors necessary for visibility of the glenoid, acromion and rotator cuff.
gS \(38.90187^{7 \prime}\)

\section*{Kolbel Soft Tissue} Retractor
angled \(2 \times 2\) blunt prongs
\(\qquad\)


Useful for gentle tissue retraction and retracting the deltoid muscle.
gS \(40.3160 \quad 6 "\)
gRetractor, Rahner
20mm width
angled



\section*{ring}
gS 40.3210 left gS 40.3212 right

Rotator Cuff Retractor (Gerber)
7", outside serrated blade

- 540.3220 gS 40.3222 right
gRetractor, Rotator Cuff
7", 34mm OD
outside serrated blade


Useful for the spreading and stabilization of space between individual vertebrae.

Turn key is removable and can be placed on either side of the spreader eliminating the need for individual left and right distractors.

gS \(40.26104^{\prime \prime}\)
gS 40.2611 replacement turn key
Vertebra Spreader
pivoting \(180^{\circ}\) arms
2 1/2" spread
gS \(40.2590{ }^{5 "}\)

\section*{Vertebra Spreader \#1}
(Cloward Style)
with ratchet, \(3 / 4\) " spread

gS 40.2412
Lumbar Lamina Spreader
arm length 2 3/4"
spread \(31 / 8^{\prime \prime}\)


Lumbar Lamina Spreader \#1
arm length: \(3^{\prime \prime}\)
spread: 2 1/8"

spread \(23 / 4^{\prime \prime}\)

\section*{38-40/20 - self-retaining retractors}

Useful in facilitating a lateral release during bunionectomy procedures.

3mm-30mm calibrations marked on bottom side of ratchet help to measure and assess the width needed for the lateral portion of the bone graft.
gS \(40.315051 / \mathbf{2 "}^{\prime \prime}\)
gRetractor, Abramsohn
outside cross serrated blades calibrated ratchet


Ratchet is calibrated in mm and measures size of opening. Useful in many procedures to accurately assess bone graft needs.


Ratchet is calibrated in mm and measures size of opening. Useful in many procedures to accurately assess bone graft needs.
gS 40.3195 10"

\section*{Saxena-Style Retractor}
outside cross serrated blades calibrated ratchet


gS \(40.3275 \quad 10\) 1/2"

\section*{Lamina Spreader}
outside cross serrated blades 20 mm width \(\times 15 \mathrm{~mm}\) depth



Blades help to separate the femur and tibia during total knee procedures.
gS \(40.332161 / \mathbf{2 " ~}^{\prime \prime}\)
Femoral Tibial Spreader
21 mm width \(\times 13 \mathrm{~mm}\) depth cross serrated outside blades



Bayoneted blades help to provide optimized visibility to surgical site.

\section*{Spreader}

7 mm width bayoneted blades with teeth

\section*{38-40/24 - self-retaining retractors}


7 mm


Useful for removing small pieces of bone for grafting procedures. The length of the bone piece required can be adjusted by turning the nut. To remove a bone piece, the bone must have contact with the base and side plates. By pressing the handles together, the piece of bone is separated and held by a spring mechanism in the closed base and side plates.
width
gS 40.10277 mm gS 40.10299 mm

Bone Graft Harvesting Forceps (Graft Cutter) 8 1/2"
for graft from \(6 \mathrm{~mm}-9 \mathrm{~mm}\)



Outspread arms are useful for small bone fixation and other indications.
```

gS 40.1120 6"

```
gDistractor, Open
with guides, calibrated ratchet max cap 2.4mm [.094"]


\section*{38-40/26 - self-retaining retractors}

OD = Outside Diameter
 for 5.5 mm OD rods

gS \(40.3665 \quad 13\) "
gCompressor, Parallel for 5.5 mm OD rods
gSource.

Drill guide for parallel positioning of the distraction screws.

For right side approach.

gS 40.1010 right body 2 1/2" spread
gS 40.1012 right body \(31 / 4^{\prime \prime}\) spread, long bar
gS 40.1016 right drill guide, plastic handle, black

\section*{Caspar Distractor Right}

Drill guide for parallel positioning of the distraction screws.

For left side approach.
gS 40.1020 left body \(21 / 2\) spread
gS 40.1022 left body \(31 / 4\) " spread, long bar
gS 40.1026 left drill guide, plastic handle, black

\section*{Caspar Distractor Left}


\section*{38-40/28 - self-retaining retractors}

OD = Outside Diameter
TL = Thread Length

gS \(40.103081 / 4\)
Caspar Bone Graft Holder and Impactor phenolic handle


For pre-drilling holes for distraction screws.
depth
gS 40.1040 8mm
gS \(40.1042 \quad 14 \mathrm{~mm}\)
Twist Drill for
Distraction Screws
5 3/4", 1.7mm OD

An internal fiixation device, such as the Distraction Screws shown below, must never be reused. They are intended for single use only.

TL
gS \(40.1052 \quad 12 \mathrm{~mm}\)
gS 40.105414 mm
gS 40.105616 mm
gS \(40.1058 \quad 18 \mathrm{~mm}\)
Distraction Screws
1 screw per package non-sterile

\begin{tabular}{ll} 
& \\
gS 40.1052 & 12 mm \\
gS 40.1054 & 14 mm \\
gS 40.1056 & 16 mm \\
gS 40.1058 & 18 mm \\
Distraction Screws \\
1 screw per package \\
non-sterile \\
\hline
\end{tabular}

gSource.

\section*{38-40/30 - self-retaining retractors}

TiAIN = Titanium Aluminum Nitride

Interchangeable blades slide easily onto the hinged arms of frame allowing for quick set-up and removal. Useful in microdiscectomy or microdecompression spinal surgeries. TiAIN coating helps to eliminate light reflections.
gS \(40.200051 / 2^{\prime \prime}\), frame only, hinged
McCulloch Retractor
60 mm spread
TiAIN coated, black matte finish


gS 40.2050
serrated narrow blade (pair) - width \(x\) depth
gS \(\mathbf{4 0 . 2 0 3 0} 20 \mathrm{~mm} \times 30 \mathrm{~mm}\)
gS \(40.204020 \mathrm{~mm} \times 40 \mathrm{~mm}\) gS \(40.205020 \mathrm{~mm} \times 50 \mathrm{~mm}\) gS \(40.206020 \mathrm{~mm} \times 60 \mathrm{~mm}\) gS \(40.207020 \mathrm{~mm} \times 70 \mathrm{~mm}\) gS \(40.208020 \mathrm{~mm} \times 80 \mathrm{~mm}\)

serrated wide blade (pair) - width \(x\) depth
gS \(40.213027 \mathrm{~mm} \times 30 \mathrm{~mm}\) gS \(40.214027 \mathrm{~mm} \times 40 \mathrm{~mm}\) gS \(40.215027 \mathrm{~mm} \times 50 \mathrm{~mm}\) gS \(40.216027 \mathrm{~mm} \times 60 \mathrm{~mm}\) gS \(40.217027 \mathrm{~mm} \times 70 \mathrm{~mm}\) gS \(40.2180 \quad 27 \mathrm{~mm} \times 80 \mathrm{~mm}\)


hook blade (each) - depth
gS 40.222020 mm
gS \(40.2230 \quad 30 \mathrm{~mm}\)
gS \(40.2240 \quad 40 \mathrm{~mm}\)
gS \(40.2250 \quad 50 \mathrm{~mm}\)
gS 40.226060 mm
gS 40.227070 mm
toothed hook blade (each) - depth
gS \(40.2320 \quad 20 \mathrm{~mm}\)
gS 40.233030 mm
gS \(40.2340 \quad 40 \mathrm{~mm}\)
gS \(40.2350 \quad 50 \mathrm{~mm}\)
gS 40.236060 mm
gS \(40.2370 \quad 70 \mathrm{~mm}\)

McCulloch Retractor Blades
TiAIN coated, black matte finish

Highly versatile retractor with interchangeable center and side blades. Center blade is attached to the retractor with the wing nut and blade can be adjusted as needed. There is a ball-snap attachment for the side blades.

Useful in peripheral vascular surgery of the carotid, subclavian, femoral, popliteal and tibial regions as well as in spinal surgery of the cervical and lumbar regions. Also useful in orthopedic surgery for hip and shoulder procedures and in general surgery for inguinal hernia, appendectomy and other minor procedures.
gS 40.6000 7"
Henly Retractor ring handle only

gS 40.6012
width \(x\) depth
gS \(40.601123 \mathrm{~mm} \times 17 \mathrm{~mm}\)
gS \(40.601223 \mathrm{~mm} \times 42 \mathrm{~mm}\)
gS \(40.601323 \mathrm{~mm} \times 67 \mathrm{~mm}\)


\section*{Henly Retractor Blades}

4 blunt prongs
set of 2

\section*{38-40/32 - self-retaining retractors}

Highly versatile retractor. Double hinged arms fold along patient's back helping to provide unhindered access to surgical site. Interchangeable blades easily connect into openings on hinged arms of frame.

For blades gS 40.7644 through gS 40.7678.
gS 40.76908 3/4"
Double Hinged Retractor ring handle only

gS \(40.7631 \quad 61 / 2^{\prime \prime}\) hinged

Caspar Retractor Handle ring handle only


0
\(\stackrel{\infty}{\infty}\)
\(\cdots\)
gS 40.7610 4 1/2", 4" arms with 85 mm opening

Caspar Cervical Spreader
hinged, transversal
frame only

blade gS 40.883125 mm gS 40.883230 mm gS 40.883335 mm
gS 40.883440 mm
gS 40.883545 mm gS 40.883650 mm
gS 40.883755 mm
gS 40.883860 mm
gS 40.8830 10" handle only, hinged
Cervical Retractor Large
4 sharp prongs

\section*{38-40/34 - self-retaining retractors}


Scoville Retractor
body only
5 1/2" arms with 6 3/4" spread


\section*{Scoville-Haverfield Retractor}
hinged, body only
5 3/4" arms with 7 1/4" spread
\begin{tabular}{ll} 
& depth \\
gS 40.5470 & \(2 "\) \\
gS 40.5480 & \(3^{\prime \prime}\) \\
gS 40.5490 & \(2^{\prime \prime}\) \\
& with cross pin \\
gS 40.5500 & \(23 / 4 "\) \\
& with cross pin
\end{tabular}

Scoville Hook

\begin{tabular}{llr} 
& \multicolumn{2}{l}{ width \(\times\) depth } \\
gS 40.5510 & \(1 "\) & \(\times 21 / 2^{\prime \prime}\) \\
gS 40.5520 & \(2^{\prime \prime}\) & \(\times 21 / 2^{\prime \prime}\) \\
gS 40.5530 & \(11 / 8^{\prime \prime} \times 25 / 8^{\prime \prime}\) \\
gS 40.5540 & \(1^{\prime \prime}\) & \(\times 31 / 2^{\prime \prime}\) \\
\\
Scoville Blade \\
with teeth
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline & width x depth & gS 40.5580 & width x depth
\[
1 " \text { x } 2 \text { 1/4" }
\] \\
\hline gS 40.5560 & \(11 / 2\) " \(\times 15 / 8 "\) & gS 40.5590 & 1" \(\times 3\) " \\
\hline gS 40.5570 & 17/8" x 2 5/8" & gS 40.5600 & 2 " x 3 1/2" \\
\hline Scoville B 4 prongs & & Meyerding with fine tee & Blade \\
\hline
\end{tabular}


width \(x\) depth
gS \(40.890113 / 4^{\prime \prime} \times 15 / 8^{\prime \prime}\) with \(53 / 4\) " opening gS \(40.890225 / 8^{\prime \prime} \times 13 / 4^{\prime \prime}\) with \(73 / 4\) " opening gS \(40.890325 / 8^{\prime \prime} \times 2\) 3/4" with \(81 / 2^{\prime \prime}\) opening

Finochietto Rib Spreader
stainless steel

gS 40.9002
Finochietto Rib Spreader
small, aluminum, with 7" opening \(11 / 8^{\prime \prime}\) width \(\times 13 / 4\) " depth blades

\section*{38-40/36 - self-retaining retractors}

gS 40.9004
Finochietto Rib Spreader
medium, aluminum, with 7" opening \(15 / 8\) " width x \(23 / 8\) " depth blades

gS 40.9020

gS 40.9030
Finochietto Rib Spreader
infant, with 3" opening
\(13 / 16\) " width \(\times 3 / 4\) " depth blades

\section*{did you know... ?}

Anterolateral thoracotomy is a surgical technique in which entry to the chest is made with an incision below the breast but above the costal margins (lower edge of the chest (thorax) formed by the bottom edge of the rib cage). The incision involves the pectoralis, serratus anterior, and intercostal muscles. Left anterolateral thoracotomy is common for open chest massage, a critical maneuver in the management of traumatic cardiac arrest. Anterolateral thoracotomy requires the use of a retractor similar to a rib spreader, such as the Tuffier Rib Spreader shown on this page.

Theodore Tuffier was a French surgeon born in 1857, whose contributions were in the field of intratracheal anesthesia, pulmonary resection and experimental cardiac surgery. He performed the first partial lung resection in 1891.

gS 40.91008 "
Bailey Rib Contractor 4 1/2" opening


\begin{tabular}{lll} 
short blade & width \(\times\) depth & shape \\
gS 40.9202 & \(25 \mathrm{~mm} \times 25 \mathrm{~mm}\) & curved round \\
gS 40.9210 & \(25 \mathrm{~mm} \times 51 \mathrm{~mm}\) & curved flat \\
GS 40.9214 & \(25 \mathrm{~mm} \times 64 \mathrm{~mm}\) & curved flat \\
gS 40.9215 & \(25 \mathrm{~mm} \times 76 \mathrm{~mm}\) & curved flat \\
gS 40.9218 & \(25 \mathrm{~mm} \times 114 \mathrm{~mm}\) & curved flat \\
& & \\
long blade & & \\
gS 40.9204 & \(25 \mathrm{~mm} \times 25 \mathrm{~mm}\) & curved round \\
GS 40.9220 & \(25 \mathrm{~mm} \times 51 \mathrm{~mm}\) & curved flat \\
GS 40.9224 & \(25 \mathrm{~mm} \times 64 \mathrm{~mm}\) & curved flat \\
GS 40.9225 & \(25 \mathrm{~mm} \times 76 \mathrm{~mm}\) & curved flat \\
gS 40.9228 & \(25 \mathrm{~mm} \times 114 \mathrm{~mm}\) & curved flat
\end{tabular}
gS 40.9280 frame only 12 " x 9 1/2"
gS 40.9282 weight only with chain -4 lbs.
Initial Incision Retractor
(Charnley)



T-handle
blade
gS 40.9504
gS 40.9

Hip Retractor

\section*{38-40/40 - self-retaining retractors}

\section*{did you know...?}

Donald Church Balfour was born in 1882 in Toronto, Canada and obtained the degree of bachelor of medicine in 1906 from the University of Toronto. During his internship at the Hamilton General Hospital, he became influenced by Dr. Ingersoll Olmstead, a prominent surgeon, who recommended him for an opening at the Mayo Clinic in the department of pathology in 1907. He was accepted and worked with Drs. Louis B. Wilson and William C. MacCarty in the surgical pathology department. In 1909, he became a junior surgeon and rotated between the surgical services of the Drs. Mayo (William J. and Charles). In 1910 he married Carrie Mayo, daughter of Dr. William J. Mayo. In 1912 he became head of a section of general surgery in the Mayo Clinic.

Dr. Balfour contributed much of his time to the work of the Mayo Foundation. From 1915 to 1923 he was associate professor of surgery, and from 1923 to 1947 he was professor of surgery. He was chief of the Division of Surgery of the Mayo Foundation from 1923 to 1935, and became director of the Mayo Foundation in 1937, serving in that capacity until his retirement in 1947. He became internationally recognized for the management of difficult gastrointestinal cases and focused his research and writings of more than 225 articles on disorders of the stomach and duodenum (the beginning portion of the small intestine, starting at the lower end of the stomach and extending to the jejunum, the middle portion of the small intestine).

He also designed numerous instruments, including the Balfour Retractor shown on page 37, and equipment such as a device for holding bottles of solution, the operating table and operating room mirror. Dr. Balfour received recognition from the Mayo Clinic, as well as from numerous national and international organizations. He held honorary fellowship in the Royal College of Surgeons of England, Edinburgh, and Australasia. Dr. Balfour was one of the founders of the World Medical Organization and a charter member of the World Health Organization and of the Central Surgical Association. He passed away in 1963.

Enrique Finochietto was born in 1881 in Buenos Aires, Argentina and entered medical school at age 16. He received his medical degree from the University of Buenos Aires in 1904. After graduation, he became an intern at the Hospital Rawson in Buenos Aires and remained a member of its staff for his entire life.

Finochietto studied nose and throat, gynecological, and orthopedic surgical practices in many western European hospitals from 1906 to 1909. Upon his return to Buenos Aires, he was appointed chief of the surgical division at the Hospital Rawson. He returned to Europe in 1918, working during World War I in the Argentine Hospital for the Wounded in Passy, located near Paris. For his dedication and work, he received the Legion of Honor and Red Cross Medal in 1919. Finochietto then traveled to the United States and visited with Harvey Cushing and the Mayo brothers. He observed surgical practices at the Mayo Clinic and other prominent hospitals before returning to Argentina.

While he acted as chief of the surgical division at the Hospital Rawson, the facility was undergoing an extensive enlargement and modernization. Finochietto planned the new surgical pavilion (Pavilion IX), where he worked alongside his brothers, Drs. Miguel Ángel and Ricardo Finochietto. Pavilion IX included numerous innovations of his design such as an outpatient department with separate dressing and examining rooms, separate sterile dressing packages, a narrower stretcher to maneuver through the halls more easily, separate departments of orthopedic surgery, endoscopy and pathology, as well as laboratories and radiology departments that were located within the hospital itself. He also eliminated the book form of medical records and instead created separate envelopes for patients.

Dr. Finochietto not only changed the way surgical pavilions were organized and operated, he also invented many surgical instruments with sixty-seven inventions to his credit. These included a motorized surgical table which allowed a patient to be moved to any position, a special orthopedic table, a bench that allowed surgeons to operate while seated, the surgical vacuum, Finochietto scissors, and the Finochietto thoracic rib spreaders as shown on pages 35-36 in this section.

Establishing the Surgical Graduate School of Buenos Aires, he also changed how surgery was taught and performed in Argentina. Finochietto was adamant about giving students more practical experience in surgery and included instruction on proper, professional demeanor throughout a surgical procedure. He also taught as a Clinical Professor of Surgery at the University of Buenos Aires and became the president of the Buenos Aires Surgical Society in 1922. He developed new surgical techniques in 1924 for the treatment of the stomach, duodenum and small intestine. In 1929 Dr. Finochietto performed the first intervention on a cardiac lesion in Argentina, successfully repairing a bullet wound to the heart of a minor. He passed away in 1948 at the age of 66 .
gS 42.59506 6" \#92
Probe and Packer double ended
gS 42.5980 5 3/4" \#91
Spatula and Packer
double ended blunt/blunt

gS 42.6020 5 3/4" \#90
Excavator and Packer double ended

gS 42.61406 1/4" \#3
Hollenback Elevator and Spatula double ended, sharp/sharp

gS 42.63306 3/4"
Weston Spatula and Chisel double ended, octogonal handle

gS 42.6316 7" \#6 gS 42.6317 7 1/2" \#7

Spatula
octogonal handle
gSource.
gS 42.6305 7" \#5
Spatula
double ended, sharp point bent end, octogonal handle

gS 42.62206 3//4"
Varady Micro Spatula double ended, sharp/sharp 0.7 mm and 1.2 mm


\section*{Spatula}
double ended, sharp point curved end, octogonal handle


42-43/4 - elevators

gS 42.62220 .7 mm spatula/ 1.3 mm hook gS 42.62231 .1 mm spatula \(/ 1.5 \mathrm{~mm}\) hook

Varady Extractor 6 3/4"
double ended, sharp/sharp

gS 42.6225 7" \(^{\prime \prime}\)
Varady Extractor
double ended, blunt/blunt 1.9 mm spatula \(/ 2.8 \mathrm{~mm}\) hook

gS \(42.62247^{\prime \prime}\)

\section*{Varady Extractor}
double ended, blunt/blunt 1.7 mm spatula/ 1.8 mm hook

gS \(42.613061 / 2^{\prime \prime}\)
Frahm Lancet double ended sharp/sharp
gS \(42.594061 / \mathbf{2}^{\prime \prime}\)
Johnson-Tucker Hook and Fork
delicate, double ended

gS \(43.3680 \quad 5\) 1/2"
Carroll Elevator
sharp
5 mm and 10 mm ends

gS 42.67904 1/2" narrow blade gS \(42.69005^{\prime \prime} \quad\) wide blade

\section*{Locke Elevator}
with McGlamry Bullneck to resist bending



gS \(43.926081 / \mathbf{2 " ~}^{\prime \prime}\)
gElevator, Ganz
sharp 4 mm , curved with 5 " knurled handle


Useful in facilitating a discectomy in anterior lumbar fusion and non-fusion procedures.
gS 43.928610 1/2"
gDissector
blunt 6mm, slight curve with 6 " knurled handle

gS \(43.370071 / 4{ }^{\prime \prime}\)
Molt \#9 Elevator (Dingman)
double ended
sharp/sharp 6 mm and 7 mm ends


Side wings prevent rolling.
gS \(42.7140 \quad 71 / \mathbf{2 " ~}^{\prime \prime}\)
Freer Elevator
double ended sharp/blunt 5 mm ends


Presbyterian Hospital Elevator
7", double ended
semi-blunt/blunt 4 mm ends


Side wings prevent rolling.
gS \(42.716591 / \mathbf{2 " ~}^{\prime \prime}\)
Davis Dissector (McCulloch) double ended sharp/blunt 6 mm ends
gS \(42.714571 / \mathbf{2}^{\prime \prime}\)
McDonald Elevator double ended blunt/blunt 5 mm ends

gS 43.3048 8＂
Pennington Elevator double ended，right and left sharp／sharp 6 mm ends

gS 42.7690 9＂

\section*{Cottle Elevator}
double ended，graduation lines sharp／blunt 3 mm and 4 mm ends

\＆゙ーで

gS \(43.716081 / 2^{\prime \prime}\)
Alerdyce Elevator
double ended
semi-sharp/blunt 7 mm ends

gS \(42.7418 \quad 1.0 \mathrm{~mm}\) and 2.0 mm balls gS \(42.7420 \quad 2.0 \mathrm{~mm}\) and 2.5 mm balls

\section*{Ball End Elevator}

8 1/2"
double ended ball tips



gSource.



Smithwick Hook \& Dissector semi-sharp 5 mm dissector blunt 10 mm hook

\section*{42-43/14 - elevators}

\begin{tabular}{lll} 
gS 43.3575 & \(7 "\) & \(1 / 8 " \prime\) \\
gS 43.3580 & \(7 "\) & \(1 / 4 "\) \\
gS 43.3600 & \(71 / 2^{\prime \prime}\) & \(3 / 8^{\prime \prime}\) \\
gS 43.3620 & \(71 / 2^{\prime \prime}\) & \(1 / 2^{\prime \prime}\) \\
gS 43.3630 & \(71 / 2^{\prime \prime}\) & \(5 / 8^{\prime \prime}\) \\
gS 43.3640 & \(8 "\) & \(3 / 4^{\prime \prime}\) \\
gS 43.3660 & \(81 / 2^{\prime \prime}\) & \(1 "\)
\end{tabular}

Key Elevator
sharp

gS 43.4100
gS 43.4130
gS 43.4120
gS 43.4110
straight straight curved slightly curved 7 mm blunt

8 mm sharp
7 mm semi-sharp 7 mm semi-sharp
edge
straight
curved curved curved

Adson Elevator
6 3/4"

gS \(42.781661 / 4 "\)
Joseph Elevator
slightly curved sharp 4 mm


gS \(42.7810 \quad 6\)
Williger Bone Elevator slightly curved sharp 6 mm


Cottle Elevator
slightly curved semi-sharp 9 mm

gS \(42.7716 \quad 71 / \mathbf{2}^{\prime \prime}\)
Cottle Elevator (Joseph) curved sharp 5.5 mm

gS \(43.3190 \quad 7\) 3/4"
Lane Elevator
blunt
6 mm
gSource.

\begin{tabular}{llll} 
& & & curve \\
gS 43.3460 & \(73 / 4^{\prime \prime}\) & 7 mm & full \\
gS 43.3480 & \(8 "\) & 7 mm & slight \\
gS 43.3440 & \(71 / 2^{\prime \prime}\) & 14 mm & full \\
gS 43.3450 & \(71 / 2^{\prime \prime}\) & 14 mm & slight
\end{tabular}

\section*{Crego Elevator}
sharp

\section*{42-43/18 - elevators}

gS 43.2410
1/4"
gS 43.2420 1/2"
gS 43.2430 3/4"
gS \(43.2440{ }^{1 \prime}\)
Periosteal Elevator
7 1/4", curved sharp blade curved edge, hollow handle


gS \(43.3110 \quad 71 / \mathbf{" ' ~}^{\prime \prime}\)
Periosteal Elevator
straight sharp 6 mm straight edge, phenolic handle

gS \(43.3070 \quad 7\) 1/4"
Periosteal Elevator
curved sharp 6mm straight edge, phenolic handle

gS \(43.3120 \quad 71 / 4{ }^{\prime \prime}\)

\section*{Periosteal Elevator}
curved sharp 6mm curved edge, phenolic handle


gS \(43.3140 \quad 71 / 4{ }^{\prime \prime}\)

\section*{Periosteal Elevator}
angled sharp 14 mm curved edge, phenolic handle


gS \(43.3170 \quad 71 / 4{ }^{\prime \prime}\)
Periosteal Elevator
straight sharp 20mm curved edge, phenolic handle

gS 43.2306 7"
Periosteal Elevator
\(90^{\circ}\) sharp 6 mm
curved edge, plastic handle, black


```

gS 43.3185 3/16" [5.0mm]
gS 43.3186 1/4" [6.4mm]
gS 43.3188 5/16" [8.0mm]

```

Periosteal Elevator
8", curved sharp
straight edge


gS \(43.1850 \quad 71 / 2^{\prime \prime}\)
Sedillot Elevator sharp 18 mm
\(\qquad\)

gS 43.1852 8"
Sedillot Elevator sharp 16mm ring handle



\(\%\)
+
\&

gS 43.2287 9"
Semb Periosteal Elevator \#5
15 mm
\(\qquad\)


\section*{42-43/24 - elevators}

gS 43.4210

gS 43.4220

gS 43.4212
```

gS 43.4210 15mm sharp straight edge
gS 43.4220 15mm sharp curved edge
gS 43.4212 6mm blunt

```

\section*{Cushing Elevator}
```

7 1/2"

```



6 mm


8mm


10 mm


17 mm
\begin{tabular}{lll} 
gS 43.3220 & 6 mm & blunt \\
gS 43.3222 & 8 mm & blunt \\
gS 43.3224 & 10 mm & blunt \\
gS 43.3240 & 17 mm & sharp
\end{tabular}

\section*{Langenbeck Elevator}

7 3/4"

gSource.

gS 43.19426 3/4"
Muehling Raspatory sharp 4 mm slightly curved


gS \(43.194363 / 4\) "
Muehling Raspatory sharp 4 mm curved

gS 43.19656 3/4"
Muehling Raspatory sharp 6mm full curve

gSource.
 sharp 13mm curved, straight edge

gS 43.21206 3/4"
Kirmission Raspatory sharp

gSource.

\section*{did you know... ?}

Eugène-Louis Doyen was a French surgeon born in Reims in 1859. He studied medicine in Reims and Paris and opened a private medical institute in Paris. As a skilled and innovative physician, he introduced several surgical techniques and medical instruments such as the Doyen Rib Raspatory shown on this page. He was a pioneer in the use of electrosurgery and electrocoagulation, and also marketed a yeast extract he called "mycolysine" for the treatment of infectious diseases. He had a strong interest in photography and cinematography and produced films of operations including a craniectomy, an abdominal hysterectomy and a separation of conjoined twins in the area of the xiphoid process of the sternum. Doyen also served as editor-in-chief of the Revue Critique de Mèdecine et de Chirurgie, as well as the Archives de Doyen, a medi-cal-surgical journal of the Doyen Institute. He passed away in 1916.

gS 43.2258 child left
gS 43.2259 child right
gS 43.2260 adult left
gS 43.2261 adult right

\section*{Doyen Rib Raspatory}

7"
sharp end



㒄


25 mm


19 mm


30 mm
\begin{tabular}{lll} 
gS 43.3500 & \(71 / 2^{\prime \prime}\) & 13 mm \\
gS 43.3520 & \(8 "\) & 19 mm \\
gS 43.3540 & \(9 "\) & 25 mm \\
gS 43.3560 & \(10 "\) & 30 mm
\end{tabular}

Chandler Elevator
blunt

```

gS 43.9010 10 1/2" 3/8"
gS 43.9020 10 1/2" 1/2"
gS 43.9030 10 1/2" 5/8"
gS 43.9040 14" 1"

```

\section*{Useful for shoulder surgery,} to elevate or retract soft tissue and muscle.

\section*{Darrach Elevator}
blunt tips with serrations


\(\begin{array}{ll}\text { gS } 43.5020 & 1 / 4^{\prime \prime} \\ \text { gS } 43.5030 & 3 / 8^{\prime \prime} \\ \text { gS } 43.5040 & 1 / 2^{\prime \prime} \\ \text { gS } 43.5060 & 3 / 4^{\prime \prime} \\ \text { gS } 43.5070 & 1 " \\ \text { gS } 43.5080 & 11 / 4^{\prime \prime}\end{array}\)

\section*{Cobb Elevator}

9", sharp
with knurled aluminum handle

\section*{gSource.}

3/8"

1/2"

3/4"

1"

\footnotetext{
gS 43.5331 3/8"
gS 43.5341 1/2"
gS \(43.5361 \quad 3 / 4 "\)
gS \(43.53811^{1 "}\)

\section*{Cobb Elevator}
}

10", sharp
with phenolic handle

stainless steel handle
gS 43.5129
1/4"
gS \(43.51313 / 8 "\)
gS \(43.5141 \quad 1 / 2 "\)
gS \(43.51613 / 4^{\prime \prime}\)
gS \(43.5181 \quad{ }^{1 "}\)
gS 43.5201 11/4"
aluminum handle
gS \(43.5130 \quad 3 / 8^{\prime \prime}\)
gS \(43.5140 \quad 1 / 2 "\)
gS \(43.5160 \quad 3 / 4 "\)
gS \(43.51801^{\prime \prime}\)
gS 43.5200 1 1/4"

\section*{Cobb Elevator}

11", sharp
with knurled handle

※
\(\underset{甘}{2}\)

\section*{gSource.}

gSource.



Wagner Elevator
13" sharp, slightly curved
with phenolic handle


\section*{Rib Elevator}

17", 9mm sharp
with phenolic handle

Useful in facilitating a discectomy in anterior lumbar fusion and nonfusion procedures. Double handed grip provides maximum control.

gS 43.9817 17"
gElevator, Bone, Double Handed
sharp 17 mm curved
with 9" plastic handle, black


Useful in facilitating a discectomy in anterior lumbar fusion and nonfusion procedures. Double handed grip provides maximum control.
gS \(43.9920 \quad 20 \mathrm{~mm}\)
gS 43.992525 mm
gElevator, Endplate, Double Handed
17" straight, sharp
with 9" plastic handle, black



gS \(44.4513 \quad 10 "\)
gAwl
sharp point phenolic handle

\section*{gSource.}

gS 45.4320 sharp gS 45.4321 blunt

\section*{Bone Hook}

8"
T-handle, 20mm deep

gS \(45.4340 \quad 8^{\prime \prime} \quad 25 \mathrm{~mm}\) deep
gS \(45.434681 / 2^{\prime \prime} 20 \mathrm{~mm}\) deep
gS \(45.4350 \quad 9\) 1/2" 20mm deep
Volkmann Bone Hook
sharp


19

\section*{45/2 - bone hooks}

\(\begin{array}{ll}\text { gS } 45.3700 & 8 \mathrm{~mm} \\ \text { gS } 45.3702 & 11 \mathrm{~mm} \\ \text { gS } 45.3704 & 17 \mathrm{~mm}\end{array}\)
Carroll Bone Hook
7"
sharp



Max opening with ratchet engaged: 16 mm .
gS \(46.218031 / \mathbf{2 "}^{\prime \prime}\)
Termite Forceps
curved pointed tips

\section*{붕}

For positioning mini plates.

Max opening with ratchet engaged: 16 mm .
gS 46.2390 5"
Plate and Bone Holding Forceps
one pointed tip, one footplate


Max opening with ratchet engaged: 13 mm .
gS 46.2395 5 1/2"
Plate Holding Forceps curved


46-47



Max opening with ratchet engaged: 16 mm .
gS \(46.23505^{\prime \prime}\)
Bone Reduction Forceps curved, pointed tips 15 mm serrations



Max opening with ratchet engaged: 15 mm .
gS \(46.22806 "\)
Bone Reduction Forceps curved serrated jaws

0.9 mm

For positioning k -wires.

Max opening with ratchet engaged: 12 mm .
gS 46.4009 0.9mm [.035"]
gS \(46.40121 .2 \mathrm{~mm}\left[.047{ }^{\prime \prime}\right]\)
gS 46.40161 .6 mm [.062"]

\section*{Bone Reduction Forceps} 5 1/2" curved with guide

1.2 mm


For positioning k-wires with diameter up to 1.1 mm [.045"].

Max opening with ratchet engaged: 18 mm .
gS 46.4060 6 3/4"
Bone Reduction Forceps curved with 1.1 mm [.045"] guide

gS 46.41166 1/2"
Glenoid Perforating Forceps strong angle

\(2 \mathrm{~mm}-10 \mathrm{~mm}\) calibrations on ratchet help with determining bone diameter when using compression screws.

Max opening with ratchet engaged: 10 mm .
gS 46.2375 5"
Phalangeal
Percutaneous
Bone Reduction Forceps


Useful for sesamoid removal.
gS \(46.8870 \quad 6 "\)
Locke Phalangeal Forceps
serrated jaws with \(1 \times 2\) teeth




Jaws with 8 pointed teeth help to provide stabilization and guidance for small bone fixation.
```

gS 46.3005 5 1/2" 5mm
gS 46.3008 5 1/2" 8mm
gS 46.3010 6 1/4" 10mm

```

Ikuta Bone Clamp straight

gS 46.2305 6 3/4"
gForceps, Lewin Bone Holding \(30^{\circ}\) angled handle overlapping serrated jaws


Space between prongs allows for placement of k-wires or screws.
gS \(46.3015 \quad 51 / 2^{\prime \prime} \quad 5 \mathrm{~mm}\) gS \(46.3018 \quad 51 / 2^{\prime \prime} \quad 8 \mathrm{~mm}\) gS \(46.302061 / 4 " 10 \mathrm{~mm}\)

Ikuta Bone Clamp angled



Delicate serrated jaws for small bone fragments.
gS \(46.8910 \quad 71 / \mathbf{2 " ~}^{\prime \prime}\)
Dingman Forceps angular serrated jaws \(2 \times 2\) sharp teeth
gS \(46.851081 / \mathbf{2 " ~}^{\prime \prime}\)
Fibula Forceps with speedlock angled tips


Max opening with ratchet engaged: 9 mm .

Verbrugge Forceps with short ratchet


gSource.

gS \(46.23107 "\)
Patella Forceps
speedlock, \(2 \times 2\) sharp teeth max opening: 48mm

For positioning 2.7 mm and 3.5 mm plates.

Plate Holding Forceps with swivel foot

gS 46.2407 7" max: 28 mm gS 46.2409 9" max: 45mm

Bone Holding Forceps with speedlock curved serrated jaws




Helps in patellar realignment or treatments for patellar fractures and dislocations. The guide is useful for setting the amount of resection needed. The patella is cut by inserting the saw blade through the saw guides on either side of the jaw.
gS 46.23129 1/2"
Patella Osteotomy Forceps
for 1.10 mm saw blades with speedlock


gS \(46.2430 \quad 71 / \mathbf{2 " ~}^{\prime \prime}\)
Semb Bone Forceps angled on side deep teeth

gS \(46.2470 \quad 8\) 1/2"
Van Buren Bone Forceps angled on side serrated jaws

\(L \forall-9\rangle\)


gS 46.1850 13" light
gS 46.1855 13" standard
gS 46.1860 18" heavy

\section*{Lane Bone Forceps}
without ratchet
2x2 teeth, serrated jaws





Max cap opening
gS 46.2650
gS 46.2655 7"
gS \(46.266081 / 2^{\prime \prime} 21 / 2^{\prime \prime}\)

\section*{Lowman Bone Clamp}

1x1 jaws




8"

Max cap opening
gS \(46.25205^{\prime \prime}\)
1"
gS 46.2540 1/4" 2"
gS 46.2560 8" 2 1/2"
Lowman Bone Clamp
1x2 jaws



7"

\begin{tabular}{lll} 
& & \begin{tabular}{l} 
Max cap \\
opening
\end{tabular} \\
gS 46.4680 & 7" & 2" \\
gS 46.4685 & 8 " & \(21 / 2 "\)
\end{tabular}

\section*{Lambert-Lowman Bone Clamp}

2x2 jaws

\(L \forall-9\rangle\)
gS \(46.2116 \quad 71 / 4^{\prime \prime}\)
gS 46.2118 9"
gS 46.2120 1/2"
gS 46.2122 11"
Ulrich Bone Holding Forceps
straight with speedlock
gSource.


```

gS 47.1130 8 1/2"
gS 47.1140 10 1/2"
gS 47.1150 11 1/2"

```

Lambotte Bone Forceps adjustable jaw with swivel head with ratchet

gS 47.6020

gS 47.6030

gS 47.6040

Pointed-ball tips help to prevent penetration of bone.
Speedlock allows for quick tightening and release of clamp on bone and helps to provide a secure hold.

Curved pattern helps with positioning on bone.

OD Ball Tips
gS \(47.6020 \quad 51 / 2^{\prime \prime} \quad 2 \mathrm{~mm}\)
gS \(47.603061 / 2^{\prime \prime} \quad 3 \mathrm{~mm}\)
gS 47.6040 8" 4 mm
gClamp, Bone Fragment
ball tips, curved
speedlock



Pelvic Reduction Forceps angled short pointed ball tips with speedlock
gS \(47.6196{ }^{10}\)
Pelvic Reduction Forceps straight long pointed ball tips with speedlock

tip detail not to scale

angled long pointed ball tips with speedlock


gSource.


Pelvic Reduction Forceps
 straight long pointed ball tips with speedlock

\section*{gSource.}



Pelvic Reduction Forceps adjustable jaw for screws with speedlock

gS \(47.1064121 / 2^{\prime \prime}\)
Bishop Bone Forceps adjustable jaw with ratchet


Lฤ-9わ
gSource.

gS 47.6204
Pelvic Reduction Forceps asymmetric pointed ball tips with speedlock

Commonly referred to as a meniscus knife.

Useful for cutting and making incisions into the menisci in the knee.
gS 49.8620 straight gS 49.8660 curved left gS 49.8700 curved right


\section*{Smillie Knife} 6 3/4" with "T" grip handle


Useful for detaching
the labrum from
the acetabulum.
gS 49.3300 8"
Krull Acetabular Knife
12 mm blade

gS \(49.8800 \quad 10 "\)
Downing Cartilage Knife
concave edge with guards


Bunnell Tendon Stripper \(6 "\) with knurled handle

\section*{gSource.}





gS 49.2220 8"
Walton Cartilage Clamp (Bircher-Ganske) slightly curved with teeth


gS 49.22308 "
Walton Cartilage Clamp (Bircher-Ganske) curved on side with teeth
gSource.



Brand Tendon Pulling Forceps angled shaft serrated jaws with \(1 \times 2\) teeth
gS 49.8350 8"
Kleinert-Kutz Tendon Retriever
rigid shaft, serrated \(1 \times 2\)

gS \(49.9280{ }^{8 \prime}\)
Martin Cartilage
Scissors
two curved serrated blades

gS 49.8356 8" \(^{\prime \prime}\)
Kleinert-Kutz Tendon Retriever
flexible shaft, serrated 1x2


gS \(49.228081 / \mathbf{2}^{\prime \prime}\)
Ortho Grasper
curved handle
\(7 \times 20 \mathrm{~mm}\) bite

gS 49.2300 10 1/2"
Ortho Grasper
straight handle \(7 \times 20 \mathrm{~mm}\) bite
\begin{tabular}{cc}
\(\odot\) & \(\odot\) \\
○ & 〇 \\
\(1.5 / 2.0\) & \(1.5 / 2.5\)
\end{tabular}
gS \(\mathbf{5 0 . 5 0 8 0} 1.5 \mathrm{~mm} / 2.0 \mathrm{~mm}\) gS \(50.5920 \quad 1.5 \mathrm{~mm} / 2.5 \mathrm{~mm}\)

Curette Excavator 5 1/2"
double ended, with holes



Commonly referred to as Verruca curette. McGlamry Bullneck resists bending.
gS 50.55704 mm gS 50.55715 mm

\section*{Curette Excavator \#4} 5"
single ended, without hole

Useful for scraping skin lesions and growths such as warts or melanomas.

Round ring on working end is sharp on inside and blunt on outside so surrounding skin is not damaged when lesion is removed.
\begin{tabular}{ll} 
gS 50.5950 & 1 mm \\
gS 50.5960 & 2 mm \\
gS 50.5970 & 3 mm \\
gS 50.5980 & 4 mm \\
gS 50.5990 & 5 mm \\
gS 50.6000 & 6 mm \\
& \\
Fox Curette \\
\begin{tabular}{l} 
F \(1 / 2 "\) \\
round
\end{tabular} &
\end{tabular}


Inside cutting edge of blade useful for shaving down and reducing the thickness of nails in order to help relieve pressure.
gS \(50.4050 \quad 5 "\)
Ingrown Nail Shaver single ended with fenestrated blade

Useful for scraping skin lesions and growths such as warts or melanomas.

Oval ring on working end is sharp on inside and blunt on outside so surrounding skin is not damaged when lesion is removed.


\#2

\#3
```

gS 50.6030 \#1 small
gS 50.6050 \#2 medium
gS 50.6070 \#3 large

```

\section*{Piffard Curette}

5 1/2"
oval
Useful in removal of skin samples for biopsy. Round end is sharp and when pushed into the skin and twisted slightly, it excises a small plug of skin. The depth of the excision needed is determined by the physician. Knurled handle helps to provide a secure gripping surface.
Can also be used in gynecological biopsies where deeper tissue samples are needed.
gS 50.6110 2mm
gS 50.6110 2mm
gS 50.6120 3mm
gS 50.6120 3mm
gS 50.6130 4mm
gS 50.6130 4mm
gS 50.6140 5mm
gS 50.6140 5mm
gS 50.6150 6mm
gS 50.6150 6mm
gS 50.6170 8mm
gS 50.6170 8mm

\section*{Keyes Punch} 4"
round


Useful for treating facial blemishes. Lancet helps to rupture pustules. Cup has a small round hole used for extraction by placing it around the blemish and applying gentle pressure.
gS 50.6660 4"

\section*{Saalfeld Comedone} Extractor lancet and fenestrated cup


Useful for treating facial blemishes.
By placing the appropriate working loop end around the blemish and applying gentle pressure, debris is forced out.
gS 50.6800 crimped
gS 50.6820 fine
gS 50.6840 square
©
gS \(50.6662 \quad 51 / \mathbf{2 "}^{\prime \prime}\)
Saalfeld Comedone Extractor
lancet and fenestrated cup

Useful for treating facial blemishes. Lancet helps to rupture pustules. Cup has a small round hole used for extraction by placing it around the blemish and applying gentle pressure. Cap protects lancet when not in use.

\section*{gS 50.7040 6 1/2"}

Walton Comedone Extractor
one fenestrated cup
curved lancet with cap

House Stapes Curette
double ended oval cups


Useful in dermal procedures as well as ENT procedures.
\(10^{\circ}\) angle
gS \(50.4234 \quad 7^{\prime \prime} \quad 1.0 \mathrm{~mm} / 1.6 \mathrm{~mm}\)
gS \(50.4230 \quad 7^{\prime \prime} \quad 1.6 \mathrm{~mm} / 2.0 \mathrm{~mm}\)
gS \(50.4238 \quad 7^{\prime \prime} \quad 2.3 \mathrm{~mm} / 2.8 \mathrm{~mm}\)
\(30^{\circ}\) angle
gS \(50.42106 " \quad 1.0 \mathrm{~mm} / 1.3 \mathrm{~mm}\)
gS \(50.42126 " \quad 1.0 \mathrm{~mm} / 2.0 \mathrm{~mm}\)
gS \(50.42146^{\prime \prime} \quad 1.6 \mathrm{~mm} / 2.0 \mathrm{~mm}\)
gS 50.4216 6" \(2.2 \mathrm{~mm} / 2.8 \mathrm{~mm}\)
gS \(50.422061 / 4 " 1.6 \mathrm{~mm} / 1.6 \mathrm{~mm}\)
gS \(50.422261 / 4 " 1.6 \mathrm{~mm} / 2.0 \mathrm{~mm}\)
gS 50.4232 7" \(1.6 \mathrm{~mm} / 2.0 \mathrm{~mm}\)
gS \(50.4236 \quad 7{ }^{\prime \prime} \quad 1.0 \mathrm{~mm} / 1.6 \mathrm{~mm}\)
gS \(50.4240 \quad 7{ }^{\prime \prime} \quad 2.3 \mathrm{~mm} / 2.8 \mathrm{~mm}\)

Useful for scraping biological tissue or debris for biopsy, excision, or cleaning procedures. Also useful for smoothing away unwanted bumps or growths.
gS \(50.7200 \quad 51 / \mathbf{2 " ~}^{\prime \prime}\)

\section*{Martini Curette}
\(4 \mathrm{~mm} / 5 \mathrm{~mm}\) round ends


Useful for dermal, small bone and periodontal procedures.
gS 50.7300 \(51 / \mathbf{2}^{\prime \prime}\)
Williger Curette
\(3 \mathrm{~mm} / 4 \mathrm{~mm}\) oval cups

\section*{did you know... ?}

During a skin biopsy, a physican will remove a small sample of skin for testing in order to help in the diagnosis of the patient's skin condition or lesion.

Three common skin biopsy procedures include:
Shave biopsy - Superficial skin biopsy where a thin layer is shaved off the suface of a lesion. A lesion may be a tumor or an area of inflammation.

Punch biopsy - A cylindrical sample is removed to view layers of a lesion.

Excisional biopsy - A scalpel is used to remove the entire visible portion of a lesion.


Volkmann Curette oval/round
cup width
gS 51.2190 \(\quad 4 / 0 \quad 2.6 \mathrm{~mm}\) gS 51.2200 \(3 / 0 \quad 3.3 \mathrm{~mm}\) gS 51.2210 \(\quad 2 / 0 \quad 4.8 \mathrm{~mm}\) gS 51.2220 \(0 \quad 5.8 \mathrm{~mm}\) gS 51.2230 \(1 \quad 7.3 \mathrm{~mm}\) gS 51.2240 \(2 \quad 8.3 \mathrm{~mm}\) gS \(51.2250 \quad 3 \quad 10.2 \mathrm{~mm}\) gS 51.2260 \(4 \quad 11.8 \mathrm{~mm}\) gS \(51.2270 \quad 5 \quad 12.8 \mathrm{~mm}\) gS \(51.2280 \quad 6 \quad 14.0 \mathrm{~mm}\)

Brun Curette (Spratt)
6 1/4", straight
round cups, hollow handle


Volkmann Curette oval/oval
\(\qquad\)


\section*{51/2 - bone curettes}

\begin{tabular}{|c|c|c|c|c|}
\hline & cup & & & \\
\hline \# & width & 7" & 8" & \(9 "\) \\
\hline 6/0 & 2.0 mm & - & gS 51.6475 & gS 51.6624 \\
\hline 5/0 & 2.2 mm & gS 51.6110* & gS 51.6476 & gS 51.6626 \\
\hline 4/0 & 2.5 mm & gS 51.6120* & gS 51.6477 & gS 51.6628 \\
\hline 3/0 & 2.8 mm & gS 51.6130* & gS 51.6478 & gS 51.6630 \\
\hline 2/0 & 3.3 mm & gS 51.6150* & gS 51.6479 & gS 51.6640 \\
\hline 0 & 3.7 mm & gS 51.6170* & gS 51.6480 & gS 51.6650 \\
\hline 1 & 4.3 mm & gS 51.6190* & gS 51.6481 & gS 51.6660 \\
\hline 2 & 4.8 mm & gS 51.6210* & gS 51.6482 & gS 51.6670 \\
\hline 3 & 5.6 mm & gS 51.6230* & gS 51.6483 & gS 51.6680 \\
\hline 4 & 6.1 mm & gS 51.6250* & gS 51.6484 & gS 51.6690 \\
\hline 5 & 6.7 mm & gS 51.6290* & gS 51.6485 & gS 51.6700 \\
\hline 6 & 8.8 mm & gS 51.6310* & gS 51.6486 & gS 51.6710 \\
\hline
\end{tabular}

\section*{Brun Curette}
straight
oval cups, hollow handle


\section*{Brun Curette} angled oval cups, hollow handle

\begin{tabular}{lll} 
& & \multicolumn{1}{c}{ cup } \\
& \(\#\) & width \\
gS 51.2015 & \(6 / 0\) & 1.5 mm \\
gS 51.2017 & \(5 / 0\) & 1.7 mm \\
gS 51.2020 & \(4 / 0\) & 2.0 mm \\
gS 51.2024 & \(3 / 0\) & 2.4 mm \\
gS 51.2027 & \(2 / 0\) & 2.7 mm \\
gS 51.2030 & 0 & 3.0 mm \\
gS 51.2036 & 1 & 3.3 mm \\
gS 51.2038 & 2 & 3.6 mm
\end{tabular}
Lempert Curette
8", straight
oval cups, hollow handle


ธ

\section*{51/4 - bone curettes}

\begin{tabular}{llll}
\(\#\) & straight & angled & cup width \\
\(3 / 0\) & gS 51.6510 & gS 51.2500 & 2.8 mm \\
\(2 / 0\) & gS 51.6520 & gS 51.2510 & 3.3 mm \\
0 & gS 51.6530 & gS 51.2520 & 3.8 mm \\
1 & gS 51.6540 & gS 51.2530 & 4.3 mm \\
2 & gS 51.6550 & gS 51.2540 & 4.8 mm \\
3 & gS 51.6560 & gS 51.2550 & 5.5 mm \\
4 & gS 51.6570 & gS 51.2560 & 6.0 mm \\
5 & gS 51.6580 & gS 51.2570 & 6.8 mm \\
6 & gS 51.6590 & gS 51.2580 & 8.8 mm
\end{tabular}

\section*{Brun Curette}

9"
oval cups, hex handle
\begin{tabular}{llll}
\(\#\) & straight & angled & cup width \\
\(3 / 0\) & gS 51.6862 & gS 51.6872 & 3.6 mm \\
\(2 / 0\) & gS 51.6863 & gS 51.6873 & 4.4 mm \\
0 & gS 51.6864 & gS 51.6874 & 5.2 mm \\
1 & gS 51.6865 & gS 51.6875 & 6.0 mm
\end{tabular}

Bushe Curette
10"
oval cups, hollow handle


gS 51.6740 straight
gS 51.6760 down
gS 51.6780 up (reverse angle)

\section*{Scoville Curette}

10"
4.7 mm cup width, oval hollow handle

gS \(51.6790 \quad 10\) "
Scoville Curette
\(90^{\circ}\) up (reverse angle) 4.7 mm cup width, oval hollow handle
\begin{tabular}{ll} 
gS 51.6883 & 3 mm \\
gS 51.6884 & 4 mm \\
gS 51.6885 & 5 mm
\end{tabular}

\section*{Bushe Curette}

10", reverse up angle oval cups, hollow handle
 hollow handle

\section*{51/6 - bone curettes}

\begin{tabular}{lll} 
\# & & cup width \\
\(4 / 0\) & gS 51.6944 & 2.9 mm \\
\(3 / 0\) & gS 51.6946 & 3.3 mm \\
\(2 / 0\) & gS 51.6948 & 4.0 mm \\
0 & gS 51.6950 & 5.0 mm \\
1 & gS 51.6954 & 5.8 mm \\
2 & gS 51.6956 & 6.4 mm \\
3 & gS 51.6958 & 7.2 mm \\
4 & gS 51.6960 & 8.3 mm \\
5 & gS 51.6962 & 8.7 mm \\
6 & gS 51.6964 & 10.0 mm
\end{tabular}

\section*{Volkmann Long Curette}

11", straight
oval cups, phenolic handle

\begin{tabular}{lll}
\(\#\) & & cup width \\
\(3 / 0\) & gS 51.5107 & 2.5 mm \\
\(2 / 0\) & gS 51.5108 & 2.8 mm \\
0 & gS 51.5110 & 3.3 mm \\
1 & gS 51.5111 & 3.8 mm \\
2 & gS 51.5112 & 4.8 mm \\
3 & gS 51.5113 & 5.8 mm \\
4 & gS 51.5114 & 7.2 mm \\
5 & gS 51.5115 & 8.7 mm \\
6 & gS 51.5116 & 10.5 mm
\end{tabular}

Spinal Fusion Curette
11", straight oval cups, knurled hollow handle


Lightweight stainless steel handle - weighs \(50 \%\) less than our standard pattern. (gS 51.5221-gS 51.5411)
\begin{tabular}{llll}
\(\#\) & straight & angled & cup width \\
\(3 / 0\) & gS 51.5708 & gS 51.5808 & 2.8 mm \\
\(2 / 0\) & gS 51.5709 & gS 51.5809 & 3.3 mm \\
0 & gS 51.5710 & gS 51.5810 & 3.6 mm \\
1 & gS 51.5711 & gS 51.5811 & 4.3 mm \\
2 & gS 51.5712 & gS 51.5812 & 4.8 mm \\
3 & gS 51.5713 & gS 51.5813 & 5.6 mm \\
4 & gS 51.5714 & gS 51.5814 & 6.0 mm \\
5 & gS 51.5715 & gS 51.5815 & 6.7 mm \\
6 & gS 51.5716 & gS 51.5816 & 8.8 mm
\end{tabular}

\section*{Cobb Curette}

11"
oval cups, lightweight knurled hollow stainless steel handle

\begin{tabular}{llll}
\(\#\) & straight & angled & cup width \\
\(3 / 0\) & gS 51.5221 & gS 51.5331 & 2.0 mm \\
\(2 / 0\) & gS 51.5231 & gS 51.5341 & 2.5 mm \\
0 & gS 51.5241 & gS 51.5351 & 3.0 mm \\
1 & gS 51.5251 & gS 51.5361 & 3.5 mm \\
2 & gS 51.5261 & gS 51.5371 & 4.5 mm \\
3 & gS 51.5271 & gS 51.5381 & 5.5 mm \\
4 & gS 51.5281 & gS 51.5391 & 7.5 mm \\
5 & gS 51.5291 & gS 51.5401 & 8.5 mm \\
6 & gS 51.5301 & gS 51.5411 & 10.0 mm
\end{tabular}

\section*{Cobb Curette}

11"
oval cups, knurled stainless steel handle
\begin{tabular}{llll}
\(\#\) & straight & angled & cup width \\
\(3 / 0\) & gS 51.5448 & gS 51.5468 & 2.7 mm \\
\(2 / 0\) & gS 51.5449 & gS 51.5469 & 3.2 mm \\
0 & gS 51.5450 & gS 51.5470 & 3.7 mm \\
1 & gS 51.5451 & gS 51.5471 & 4.3 mm \\
2 & gS 51.5452 & gS 51.5472 & 4.7 mm \\
3 & gS 51.5453 & gS 51.5473 & 5.2 mm \\
4 & gS 51.5454 & gS 51.5474 & 5.7 mm \\
5 & gS 51.5455 & gS 51.5475 & 6.7 mm \\
6 & gS 51.5456 & gS 51.5476 & 8.3 mm
\end{tabular}

\section*{Cobb Curette}

11"
oval cups, knurled aluminum handle


\section*{Bone Curette}
\(15^{\prime \prime}\)
oval cups, knurled hollow handle

cup width
gS 51.75018 .4 mm
gS 51.750211 mm
gS \(51.7503 \quad 15 \mathrm{~mm}\)
gS \(51.7504 \quad 18 \mathrm{~mm}\)
Bone Curette
15", straight
oval cups, double handed knurled T-handle

\section*{51/10 - bone curettes}

Double handed grip provides maximum control.

gS 51.4800 straight
gS 51.4801 curved right
gS 51.4802 curved left
Tooth Curette, Double Handed
17", cup width, 6.5 mm
oval toothed cups, 9 " plastic handle, black
 Double handed grip provides maximum control. Angled curettes allow access to posterolateral corners.
\begin{tabular}{lll} 
straight & angled & cup width \\
gS 51.7802 & gS 51.7812 & 2.5 mm \\
gS 51.7804 & gS 51.7814 & 4.5 mm \\
gS 51.7807 & gS 51.7817 & 7.5 mm \\
gS 51.7810 & gS 51.7820 & 10.0 mm
\end{tabular}
gCurette, Double Handed
17", oval cups
9 " plastic handle, black

WL = Working Length
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Handle is knurled on front side and flat on back side.} \\
\hline gS 51.5003 & 3 mm angled up \\
\hline gS 51.5005 & 5 mm angled up \\
\hline gS 51.5013 & 3 mm angled down \\
\hline gS 51.5015 & 5 mm angled down \\
\hline gS 51.5023 & \(3 \mathrm{~mm} 45^{\circ}\) right \\
\hline gS 51.5025 & \(5 \mathrm{~mm} 45^{\circ}\) right \\
\hline gS 51.5033 & \(3 \mathrm{~mm} 90^{\circ} \mathrm{left}\) \\
\hline gS 51.5035 & \(5 \mathrm{~mm} 90^{\circ}\) left \\
\hline gS 51.5045 & 5 mm curved right \\
\hline gS 51.5055 & 5 mm curved left \\
\hline
\end{tabular}

Hardy Bayonet Curette \(91 / 2^{\prime \prime}\), round fenestrated cup sharp/sharp
knurled handle, 4 3/4" WL





\(\begin{array}{ll}\text { gS } 51.5094 & 4 \mathrm{~mm} \\ \text { gS } 51.5095 & 5 \mathrm{~mm} \\ \text { gS } 51.5096 & 6 \mathrm{~mm}\end{array}\)
Kraemer Bayonet Ring Curette
10", straight, round fenestrated cup sharp/sharp
hollow handle, 4 1/2" WL




gS 51.5490 straight
gS 51.5492 slight angle gS 51.5494 full angle

\section*{Semmes Ring Curette}

9 ", oval fenestrated 5 mm cup width sharp/blunt hollow handle
\begin{tabular}{llll}
\(\#\) & straight & angled & cup width \\
1 & gS 51.5500 & gS 51.5560 & 3 mm \\
2 & gS 51.5520 & gS 51.5580 & 6 mm \\
3 & gS 51.5540 & gS 51.5600 & 8 mm
\end{tabular}

\section*{Cone Ring Curette}

9 ", round fenestrated cups sharp/sharp
knurled aluminum handle


4 mm


5 mm
gS 51.59044 mm
gS 51.5905 5 mm
Caspar Bone Curette
10", straight, toothed square fenestrated cup sharp/blunt

Useful in removing excess tissue for sampling or growths during neurological procedures.
\begin{tabular}{llll}
\(\#\) & straight & angled & cup width \\
1 & gS 51.5601 & gS 51.5611 & 3 mm \\
2 & gS 51.5602 & gS 51.5612 & 6 mm \\
3 & gS 51.5603 & gS 51.5613 & 8 mm
\end{tabular}

\section*{Cone Ring Curette}
\(15 "\), round fenestrated cups sharp/sharp
knurled aluminum handle


1



3

angled

\begin{tabular}{llll} 
gS 51.5640 & straight & 8 mm & sharp/blunt \\
gS 51.5645 & straight & 11 mm & sharp/blunt \\
gS 51.5650 & angled & 8 mm & sharp/sharp \\
gS 51.5655 & angled & 11 mm & sharp/sharp \\
gS 51.5660 & angled & 8 mm & sharp/sharp, right curved shaft \\
gS 51.5665 & angled & 11 mm & sharp/sharp, right curved shaft \\
gS 51.5670 & angled & 8 mm & sharp/sharp, left curved shaft \\
gS 51.5675 & angled & 11 mm & sharp/sharp, left curved shaft
\end{tabular}

\section*{Zielke Ring Curette}

13 1/2", oval fenestrated cups
ergonomic plastic handle

gS 51.5682 17" angled 3mm
gS 51.5684 20" angled 6 mm

\section*{Cone Ring Curette}
round fenestrated cups
sharp/sharp
phenolic handle


Useful in facilitating a discectomy in anterior lumbar fusion and nonfusion procedures. Double handed grip provides maximum control.
gS 51.7706 17"
gCurette, Box, Double Handed
straight, 6 mm fenestrated cup sharp/blunt
9" plastic handle, black

Useful in facilitating a discectomy in anterior lumbar fusion and nonfusion procedures. Double handed grip provides maximum control.
gS 51.7908 17" \(^{\prime \prime}\)
gCurette, Teardrop Ring, Double Handed
angled, 8mm fenestrated cup
sharp/sharp
9" plastic handle, black



Useful in facilitating a discectomy in anterior lumbar fusion and nonfusion procedures. Double handed grip provides maximum control.
gS \(51.7710{ }^{17 \prime}\)
gCurette, Triangle, Double Handed straight, 10 mm fenestrated cup sharp/blunt
9" plastic handle, black

\section*{51/16 - bone curettes}

\section*{did you know... ?}

Anterior lumbar interbody fusion (ALIF) is a traditional open spine surgery aimed at removing the source of neural compression in the spine and immobilizing a section of the back so that pain triggered by movement (mechanical pain) is eliminated. "Anterior" indicates that the procedure is performed through the front of the body. "Lumbar" refers to the lower back, while "interbody" means the main component of the surgery takes place in the space between two adjacent vertebrae.

ALIF is commonly performed for a variety of painful spinal conditions, such as spondylolisthesis and degenerative disc disease, among others. As we age, the spongy discs between vertebrae begin to deteriorate, they lose water content and disc height. This causes them to "collapse" into the spine, where they can bulge or rupture into the spinal canal, exerting painful pressure on surrounding spinal nerves.


LUMBAR SPINE AND SPINAL CORD

For anterior spinal fusion, an incision is made on one side of the abdomen. Organs, soft tissue, and blood vessels are moved aside so there is a wide exposure of the intervertebral disc without retraction of the spinal nerves, decreasing risk of neurologic injury.

A discectomy is performed to remove all or part of the damaged disc. The intervertebral space is widened, both to make room for a bone graft and implants and to enlarge the foramina, which are the open spaces on the sides of each vertebra through which spinal nerves pass. A bone graft and implants are inserted between the vertebral bodies and in time, the bones should completely fuse together. In some cases, the two fused vertebrae are further immobilized with rods and screws attached to the pedicles.

straight
\begin{tabular}{ll} 
gS 52.4355 & 2 mm \\
gS 52.4360 & 4 mm \\
gS 52.4380 & 6 mm \\
gS 52.4400 & 8 mm \\
gS 52.4420 & 10 mm \\
gS 52.4440 & 12 mm \\
gS 52.4430 & 14 mm \\
gS 52.4450 & 15 mm \\
gS 52.4460 & 18 mm \\
gS 52.4470 & 19 mm \\
gS 52.4350 & 20 mm
\end{tabular}

Mini Lambotte Osteotome 5"


25mm

gS 52.0400 str 10 mm
gS 52.0460 str 20 mm
gS 52.0500 str 25 mm
gS 52.0700 cvd 5 mm
gS 52.0750 cvd 10 mm
Long Bevel Osteotome
7" with calibration lines long beveled cutting end

curved
gS 52.39033 mm gS 52.39044 mm gS 52.39055 mm gS 52.39066 mm
gS 52.39077 mm
gS 52.39088 mm gS \(52.3910 \quad 10 \mathrm{~mm}\) gS \(52.3912 \quad 12 \mathrm{~mm}\) gS 52.391616 mm
straight
gS \(52.4495 \quad 2 \mathrm{~mm}\)
gS 52.44963 mm
gS 52.44984 mm
gS \(52.4499 \quad 5 \mathrm{~mm}\)
gS 52.45006 mm
gS \(52.4507 \quad 7 \mathrm{~mm}\)
gS \(52.4508 \quad 8 \mathrm{~mm}\)
gS \(52.4510 \quad 10 \mathrm{~mm}\)
gS \(52.4520 \quad 12 \mathrm{~mm}\)
gS 52.453016 mm
gS \(52.4540 \quad 19 \mathrm{~mm}\)
gS \(52.4550 \quad 22 \mathrm{~mm}\)
gS \(52.4560 \quad 25 \mathrm{~mm}\)
\begin{tabular}{lll} 
gS 52.3919 & 19 mm \\
gS 52.3922 & 22 mm
\end{tabular}
gS 52.392525 mm

16 mm
19 mm


\section*{Lambotte Osteotome}

7"
with calibration lines



1/2"



\(11 / 4 "\)
*Fits in gS 98.6040 gRack, Lambotte Osteotomes - see page 98-99/9.
straight
\begin{tabular}{lll} 
gS 52.4040 & \(1 / 4^{\prime \prime}\) & {\([6 \mathrm{~mm}]^{*}\)} \\
gS 52.4060 & \(1 / 2^{\prime \prime}\) & {\([13 \mathrm{~mm}]^{*}\)} \\
gS 52.4100 & \(3 / 4^{\prime \prime}\) & {\([19 \mathrm{~mm}]^{*}\)} \\
gS 52.4140 & \(1^{\prime \prime}\) & {\([25 \mathrm{~mm}]^{*}\)} \\
gS 52.4180 & \(11 / 4^{\prime \prime}\) & {\([32 \mathrm{~mm}]^{*}\)} \\
gS 52.4220 & \(11 / 2^{\prime \prime}\) & {\([38 \mathrm{~mm}]^{*}\)}
\end{tabular}
curved
gS 52.4280 1/4" [6mm]* gS 52.4290 1/2" [13mm] gS 52.4300 3/4" \(\quad[19 \mathrm{~mm}]^{*}\) gS 52.4310 1" [25mm]* gS 52.4320 1 1/4" [32mm]* gS 52.4330 1 1/2" [38mm]*

\section*{Lambotte Osteotome} 9"



16 mm


18 mm


20 mm



30 mm


38 mm
44 mm
straight
gS 52.50044 mm gS 52.50066 mm gS 52.50088 mm gS \(52.5010 \quad 10 \mathrm{~mm}\) gS \(52.5013 \quad 13 \mathrm{~mm}\) gS \(52.5015 \quad 15 \mathrm{~mm}\) gS \(52.5016 \quad 16 \mathrm{~mm}\) gS \(52.5018 \quad 18 \mathrm{~mm}\) gS \(52.5020 \quad 20 \mathrm{~mm}\) gS \(52.5025 \quad 25 \mathrm{~mm}\) gS \(52.5030 \quad 30 \mathrm{~mm}\) gS 52.503838 mm gS 52.504444 mm gS \(52.5050 \quad 50 \mathrm{~mm}\)

\section*{Lambotte Osteotome}
\(93 / 4^{\prime \prime}\)

gSource.


5 1/4"
straight
gS 52.5970
gS 52.5980
gS 52.5990
gS 52.6000
gS 52.6010
gS 52.6020
gS 52.6030
gS 52.6040
\begin{tabular}{|c|c|c|}
\hline 5 1/4" curved & & \\
\hline gS 52.6053 & 1/8" & [3mm] \\
\hline gS 52.6054 & 3/16" & [4mm] \\
\hline gS 52.6056 & 1/4" & [6mm] \\
\hline gS 52.6058 & 5/16" & [8mm] \\
\hline gS 52.6060 & 3/8" & [10mm] \\
\hline gS 52.6063 & 1/2" & [13mm] \\
\hline gS 52.6066 & 5/8" & [16mm] \\
\hline gS 52.6069 & \(3 / 4 "\) & [19mm] \\
\hline
\end{tabular}

\(3 / 4 "\)
5/8"

1

6 3/4"
straight
gS 52.6073 1/8" [3mm]
gS 52.6074 3/16" [4mm]
gS 52.6076 1/4" [6mm]
gS 52.6078 5/16" [8mm]
\(\begin{array}{lll}\text { gS } 52.6080 & 3 / 8 " ~ & {[10 \mathrm{~mm}]}\end{array}\)

Hoke Osteotome
hexagonal handle

\begin{tabular}{ll} 
gS 52.3680 & 2 mm \\
gS 52.3690 & 3 mm \\
gS 52.3700 & 4 mm \\
gS 52.3720 & 6 mm \\
gS 52.3740 & 8 mm \\
gS 52.3760 & 10 mm \\
gS 52.3780 & 12 mm \\
gS 52.3800 & 15 mm
\end{tabular}

Sheehan Osteotome
6 1/4" straight
hexagonal handle, with cross serrations on handle end

```

gS 52.4902 2mm
gS 52.4904 4mm
gS 52.4906 6mm
gS 52.4908 8mm
gS 52.4910 10mm
gS 52.4912 12mm

```

\section*{Converse Osteotome}

7"
straight

gS 52.1220 curved right guard gS 52.1222 curved left guard
gS 52.1318 straight with guard
Anderson-Neivert Osteotome
8 " with single guard
7 mm

gS 52.0300 straight
gS 52.0301 curved right
gS 52.0302 curved left
Silver Osteotome
7" with single guard



12 mm


14 mm


16 mm

Cinelli Osteotome
\(61 / 2^{\prime \prime}\) with double guard straight

\section*{gSource.}

\begin{tabular}{lll} 
& \multicolumn{3}{l}{ straight } \\
gS 52.5480 & \(1 / 4^{\prime \prime}\) & {\([6 \mathrm{~mm}]\)} \\
gS 52.5490 & \(3 / 8^{\prime \prime}\) & {\([10 \mathrm{~mm}]\)} \\
gS 52.5500 & \(1 / 2 "\) & {\([13 \mathrm{~mm}]\)} \\
gS 52.5510 & \(5 / 8^{\prime \prime}\) & {\([16 \mathrm{~mm}]\)} \\
gS 52.5520 & \(3 / 4^{\prime \prime}\) & {\([19 \mathrm{~mm}]\)} \\
gS 52.5530 & \(1 "\) & {\([25 \mathrm{~mm}]\)} \\
gS 52.5540 & \(11 / 4 "\) & {\([32 \mathrm{~mm}]\)}
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{c}{ curved } \\
gS 52.5570 & \(1 / 4^{\prime \prime}\) & {\([6 \mathrm{~mm}]\)} \\
gS 52.5580 & \(3 / 8^{\prime \prime}\) & {\([10 \mathrm{~mm}]\)} \\
gS 52.5590 & \(1 / 2^{\prime \prime}\) & {\([13 \mathrm{~mm}]\)} \\
gS 52.5600 & \(5 / 8^{\prime \prime}\) & {\([16 \mathrm{~mm}]\)} \\
gS 52.5610 & \(3 / 4^{\prime \prime}\) & {\([19 \mathrm{~mm}]\)} \\
gS 52.5620 & \(1 "\) & {\([25 \mathrm{~mm}]\)} \\
gS 52.5630 & \(11 / 4^{\prime \prime}\) & {\([32 \mathrm{~mm}]\)}
\end{tabular}
```

Smith Peterson Osteotome
8"
solid handle

```

gS \(52.4870 \quad 1 / 4^{\prime \prime} \quad[6 \mathrm{~mm}]\) gS 52.4873 1/2" [13mm]
gOsteotomes, Hibbs 9 1/2" curved
hollow hexagonal handle



```

gS 53.0012 1/2" [13mm]
gS 53.0019 3/4" [19mm]

```

Osteotome
8" straight
knurled stainless steel handle



5/8"


3/4"


1"

\(11 / 4^{\prime \prime}\)
\begin{tabular}{lll} 
& \multicolumn{3}{c}{ straight } \\
gS 53.4500 & \(1 / 4^{\prime \prime}\) & {\([6 \mathrm{~mm}]\)} \\
gS 53.4510 & \(3 / 8^{\prime \prime}\) & {\([10 \mathrm{~mm}]\)} \\
gS 53.4520 & \(1 / 2^{\prime \prime}\) & {\([13 \mathrm{~mm}]\)} \\
gS 53.4530 & \(5 / 8^{\prime \prime}\) & {\([16 \mathrm{~mm}]\)} \\
gS 53.4540 & \(3 / 4^{\prime \prime}\) & {\([19 \mathrm{~mm}]\)} \\
gS 53.4550 & \(1 "\) & {\([25 \mathrm{~mm}]\)} \\
gS 53.4560 & \(11 / 4 "\) & {\([32 \mathrm{~mm}]\)}
\end{tabular}
\begin{tabular}{lll} 
& \multicolumn{3}{c}{ curved } \\
gS 53.4570 & \(1 / 4^{\prime \prime}\) & {\([6 \mathrm{~mm}]\)} \\
gS 53.4580 & \(3 / 8^{\prime \prime}\) & {\([10 \mathrm{~mm}]\)} \\
gS 53.4590 & \(1 / 2^{\prime \prime}\) & {\([13 \mathrm{~mm}]\)} \\
gS 53.4600 & \(5 / 8^{\prime \prime}\) & {\([16 \mathrm{~mm}]\)} \\
gS 53.4610 & \(3 / 4^{\prime \prime}\) & {\([19 \mathrm{~mm}]\)} \\
gS 53.4620 & \(1 "\) & {\([25 \mathrm{~mm}]\)} \\
gS 53.4630 & \(11 / 4 "\) & {\([32 \mathrm{~mm}]\)}
\end{tabular}

\section*{Cobb Osteotome}

11"
knurled stainless steel handle


gS \(53.4410 \quad 10 \mathrm{~mm}\)
gS \(53.4415 \quad 15 \mathrm{~mm}\)
Lexer Osteotome
11"
angled shaft, phenolic handle

Stainless steel
end cap on handle.

gSource.


Useful in facilitating a discectomy in anterior lumbar fusion and non-fusion procedures. Double handed grip provides maximum control.
```

gS 53.7918 18mm
gS 53.7925 25mm

```
gOsteotome, Double Handed
17" straight
9" plastic handle, black


gS 54.6570 \#59 small gS 54.6600 \#61 large

Nail Splitter
5 " straight, single ended sharp blade

gS 54.7500
Chisel Spade
5 1/4" curved edge single ended

\(\begin{array}{ll}\text { gS } 54.1090 & 4 \mathrm{~mm} \\ \text { gS } 54.1092 & 6 \mathrm{~mm} \\ \text { gS } 54.1094 & 8 \mathrm{~mm}\end{array}\)
Hajek Septum Chisel 6" straight sharp "V" edge


Tapered osteotome end.

Serrated tamp end.
gS 54.10854 mm
gS 54.10867 mm
gS \(54.1087 \quad 12 \mathrm{~mm}\)
Cottle Septum Chisel 7" straight tapered end graduation lines
gS 54.36004 mm
gS 54.36206 mm
gS 54.36408 mm
gS \(54.3660 \quad 10 \mathrm{~mm}\)
gS \(54.3680 \quad 12 \mathrm{~mm}\)
Mini Lexer Chisel
7" straight
phenolic handle
gS 54.38906 mm
gS \(54.3900 \quad 12 \mathrm{~mm}\)
gS \(54.3910 \quad 18 \mathrm{~mm}\)

\section*{Army Pattern Chisel} 7"


\section*{Lexer Chisel}
\(81 / 2^{\prime \prime}\) straight
phenolic handle
\begin{tabular}{ll} 
gS 54.3460 & 5 mm \\
gS 54.3480 & 7 mm \\
gS 54.3500 & 10 mm \\
gS 54.3520 & 15 mm \\
gS 54.3540 & 20 mm \\
gS 54.3560 & 25 mm \\
gS 54.3580 & 30 mm
\end{tabular}

gS 54.14004 mm gS 54.14106 mm gS 54.14208 mm gS \(54.1430 \quad 10 \mathrm{~mm}\) gS \(54.1440 \quad 12 \mathrm{~mm}\) gS \(54.1450 \quad 14 \mathrm{~mm}\)

Alexander Chisel
7" straight chisel rounded edge

```

gS 54.1100 10mm
gS 54.1120 14mm
gS 54.1140 18mm
gS 54.1160 22mm

```

Stille Type Chisel
8"
straight edge


```

gS 54.1590 1/4"
gS 54.1600 3/8"
gS54.1610 1/2"
gS 54.1620 5/8"
gS 54.1630 3/4"
gS 54.1640 7/8"
gS 54.1650 1"
gS 54.1660 1 1/8"
gS 54.1670 1 1/4"
gS 54.1680 1 1/2"

```
curved
gS \(54.1730 \quad 1 / 4^{\prime \prime}\) gS \(54.1740 \quad 3 / 8^{\prime \prime}\) gS \(54.1750 \quad 1 / 2^{\prime \prime}\) gS \(54.17605 / 8^{\prime \prime}\)
gS \(54.1770 \quad 3 / 4 "\)
gS 54.1780 7/8"
gS \(54.17901^{1 "}\)
gS \(54.180011 / 8^{\prime \prime}\)
gS \(54.1810 \quad 11 / 4^{\prime \prime}\)
gS \(54.1820 \quad 11 / 2^{\prime \prime}\)

Hibbs Chisel
\(9 "\)
solid hexagonal handle


\section*{did you know... ?}

Spinal fusion is one of the surgical procedures that have been performed for many years to treat chronic painful spinal conditions, in both the neck and the lower back. Additionally, spinal fusions have been performed to correct spinal deformities such as scoliosis, or curvature of the spine, and instability or abnormal movement between adjoining vertebras. Spinal fusion is the linking of adjacent vertebra through the process of bone formation. Usually, this procedure is augmented with the addition of metal implants such as rods and screws or hooks and rods. Newer intervertebral implants that are cylindrical shapes can actually be placed into the area where the intervertebral disc joins one vertebra to the other. The hallmark of spinal fusion requires that bone grow between one vertebra and the other. Until very recently, this has been accomplished with the use of bone graft material. The gold standard, which all other graft materials are compared to, is the patient's own bone. To use the patient's own bone requires taking bone from one site in the patient's body, usually the pelvic bone or the iliac bone. This bone is "harvested" using chisels, gouges and other bone cutting instruments. That bone is then packed between the vertebras or around the vertebra in such a way to stimulate bone growth and ultimately fuse the vertebra together.

\section*{did you know... ?}

Dr. Michael Hoke was among the earliest orthopedic surgeons in the South and a leader in charitable institutions for crippled children. He was born in 1874 in Lincolnton, North Carolina. He completed his medical degree at the University of Virginia and then interned at the Johns Hopkins University. In 1897 he began a general surgery practice in Atlanta. In 1900 he spent a year in Boston for post-graduate study in orthopedics and then returned to Atlanta to become the South's first specialist in orthopedics. While there, he developed a keen interest in crippled children, often caring for those unable to pay. He devised a procedure performed on the feet of polio victims which became known as the "Hoke operation".

The Scottish Rite Convalescent Hospital for Crippled Children was founded in 1915 through the dedication of Mrs. Bertie Wardlow and Dr. Michael Hoke. The two-cottage Decatur facility gave indigent, crippled children a place to recover after having surgery at Piedmont Hospital and Wesley Memorial Hospital (now Emory University Hospital). Three years later, in 1918, a new 50 bed building was opened on West Hill Street with the facilities to become a full orthopedic surgical hospital for those who could not afford to pay for care, and featured a natural light surgical suite. The new hospital focused on treating Georgia children crippled by polio, and was the first hospital in the United States devoted to the orthopedic care of
children. The Oakhurst hospital served as a model for the 19 Shriner's Hospitals for Crippled Children which were later opened around the nation. After returning back to North Carolina he was the first principal surgeon at the North Carolina Orthopedic Hospital, opened in 1921.

President Franklin D. Roosevelt, himself a polio victim, took a special interest in Dr. Hoke's work. In 1931 he persuaded Dr. Hoke to leave his Atlanta practice and take a post as surgeon-in-chief at the Georgia Warm Springs Foundation (now known as Roosevelt Warm Springs Institute). The operations were paid for by the Foundation for Infantile Paralysis, which later became the March of Dimes. President Roosevelt's first visit to Warm Springs was in 1924 when he heard about improvements made by polio victims as a result of swimming in the 88 -degree natural spring at the Georgia resort. President Roosevelt purchased the property in 1927 and turned it into a polio treatment center. Dr. Hoke and his wife occupied the "Little White House" at Warm Springs, as it became known, vacating it when President Roosevelt was in residence. Dr. Hoke was not the President's personal physician, but had his respect and trust. Declining in health, Dr. Hoke was forced to retire to Beaufort, South Carolina in 1937. He died in 1944.

The Hoke Chisel is shown on page 2 in this section.
```

gS 56.0003 3mm
gS 56.0004 4mm
gS 56.0005 5mm
gS 56.0006 6mm
gS 56.0007 7mm

```

Partsch Gouge
5 1/2" straight rounded edge

gS 56.39206 mm
gS \(56.3930 \quad 12 \mathrm{~mm}\)
gS \(56.3940 \quad 14 \mathrm{~mm}\)
Army Pattern Gouge
6 1/2" straight rounded edge


gS 56.15004 mm
gS 56.15106 mm
gS 56.15208 mm
gS \(56.1530 \quad 10 \mathrm{~mm}\)
gS \(56.1540 \quad 12 \mathrm{~mm}\)
gS \(56.1550 \quad 14 \mathrm{~mm}\)
Alexander Gouge
7" straight
rounded edge

gS 56.01044 mm
gS 56.01066 mm
gS 56.01088 mm
gS \(56.0110 \quad 10 \mathrm{~mm}\)
gS 56.011212 mm
Mini Lexer Gouge
7" straight
phenolic handle

\section*{gSource.}


\section*{Smith Peterson Gouge} 8"
rounded edge


\section*{56/4-gouges}

gS \(56.1280 \quad 25 \mathrm{~mm}\)
Swan Neck Gouge
9" curved
solid hexagonal handle

\begin{tabular}{|c|c|c|c|}
\hline & straight & & curved \\
\hline gS 56.4870 & 1/4" & gS 56.5020 & 1/4" \\
\hline gS 56.4880 & 3/8" & gS 56.5030 & 3/8" \\
\hline gS 56.4890 & 1/2" & gS 56.5040 & 1/2" \\
\hline gS 56.4900 & 5/8" & gS 56.5050 & 5/8" \\
\hline gS 56.4910 & 3/4" & gS 56.5070 & 3/4" \\
\hline gS 56.4920 & 7/8" & gS 56.5080 & 7/8" \\
\hline gS 56.4930 & 1" & gS 56.5090 & 1" \\
\hline gS 56.4940 & \(11 / 8 "\) & gS 56.5100 & 11/8" \\
\hline gS 56.4950 & 11/4" & gS 56.5110 & 11/4" \\
\hline gS 56.5010 & \(11 / 2^{\prime \prime}\) & gS 56.5120 & 11/2" \\
\hline
\end{tabular}

Hibbs Gouge
9 1/2"
solid hexagonal handle

gSource.
gS 56.1300 straight
gS 56.1320 half curve
gS 56.1340 full curve
gS 56.1360 reverse curve

\section*{Cobb Gouge}

11"
knurled stainless steel handle
gS 56.5970 str 7 mm
gS 56.5972 str 10 mm
gS 56.5980 ang fwd 10 mm
gS 56.5982 ang fwd 15 mm

\section*{Lexer Gouge}

11"
phenolic handle

```

gS 56.6018 str 9mm
gS 56.6020 str 15mm
gS 56.6010 ang fwd 9mm
gS 56.6014 ang fwd 15mm
gS 56.6012 ang back 9mm
gS 56.6016 ang back 15mm
Wagner Gouge
13 1/2"
phenolic handle

```

\section*{did you know... ?}

Gouges are used to scoop away strips of soft bone and are often used during bone grafting procedures. Bone grafting is a surgical procedure that places new bone or replacement material into spaces between or around broken bone due to fractures, or in holes in bone due to defects, in order to aid in healing. It is used to repair bone fractures that are complex and pose risk to the patient, or fail to heal properly. Also, it is used to help fusion between vertebrae, correct deformities, or provide structural support for fracture of the spine. Defects in bone caused by congenital disorders, traumatic injury, or surgery for bone cancer, as well as facial or cranial reconstruction, can also be treated.

A bone graft can help repair a defect in three ways:
- Osteogenesis, the formation of new bone by the cells contained within the graft.
- Osteoinduction, a chemical process in which molecules contained within the graft (bone morphogenetic proteins - BMP) convert the patient's cells into cells capable of forming bone.
- Osteoconduction, a physical effect where the graft matrix configures a scaffold on which cells in the recipient form new bone.

The word "graft" commonly refers to an autograft or an allograft. An autograft is a graft made of bone from a patient's own body, normally taken from the hip bones or ribs. A graft using bone from a cadaver which has been frozen and stored in a tissue bank is an allograft. Allografts are used if there is an inadequate amount of autograft material available, and the limited size and shape of a patient's bone. Allograft bone is used in reconstructive surgery of the hip, knee, and long bones, as well as in cases of bone loss due to trauma or tumors. Once the bone graft is accepted by the body, the transplanted bone slowly converts into new living bone or soft tissue.

Bone tissue is a matrix-like structure primarily composed of a protein called collagen. It is strengthened by hydroxyapatite, deposits of calcium and phosphate salts. Four types of bone cells are located within and around this matrix and together are responsible for building the bone matrix, maintaining it, and remodeling the bone as needed. They are:
- Osteoblasts, which produce the bone matrix.
- Osteocytes, mature osteoblasts that maintain the bone.
- Osteoclasts, which break down and remove bone tissue.
- Bone lining cells, which cover bone surfaces.

Solid stainless steel.
Convex head.
gS 59.7010 6 1/2"
Mini Mallet
weight: 4oz [113g] head diameter: 20 mm


Lead-filled head should only be used to strike flat surfaces.

Stainless steel handle.
gS 59.7014 6 1/2"
Mini Mallet
weight: 5oz [142g] head diameter: 20mm


Small round contact surface useful in areas where access is limited.

Stainless steel head with phenolic handle.
gS 59.7120 8"
Narrow Tip Mallet weight: 6oz [170g] head diameter: 7mm


Lead-filled head should only be used to strike flat surfaces.

Stainless steel handle.

Solid stainless steel.
Convex/flat head.
gS 59.7600 8"
Lucae Mallet
weight: 8oz [227g] head diameter: 25 mm

Solid stainless steel.
gS 59.7615 7"
Partsch Mallet
weight: 6oz [170g]
head diameter: 22 mm

Stainless steel head with replaceable nylon caps and aluminum handle.
gS 59.76207 1/2" mallet gS 59.7621 nylon cap only

Nylon Mallet
weight: 7oz [198g] head diameter: 25 mm


Solid stainless steel.
gS 59.7870 8"
Hajek Mallet
weight: 7oz [198g]
head diameter: 27 mm


Combination mallet with one replaceable nylon capped end and one stainless steel end. Aluminum handle.
gS \(59.786071 / 2\) " mallet gS 59.7621 nylon cap only

Combination Mallet
weight: \(80 z\) [227g] head diameter: 25 mm



Solid stainless steel.
gS \(59.7818 \quad 71 / \mathbf{2 " ~}^{\prime \prime}\)
Cloward-style Mallet
weight: 8oz [227g]
head diameter: 20mm
gS 59.7876 10"
Phenolic Lightweight Mallet weight: 9oz [255g] head diameter: 43 mm

Solid stainless steel.
gS 59.8600 8"

\section*{Collin Mallet}
weight: \(80 z\) [227g] head diameter: 30 mm

Replaceable double nylon caps with green silicone handle.
gS \(59.880081 / \mathbf{2}^{\prime \prime}\)
gS 59.7621 nylon cap only
gMallet
weight: 9oz [255g] head diameter: 25 mm


Lead-filled head should only be used to strike flat surfaces.

Stainless steel handle.
gS \(59.7610 \quad 71 / \mathbf{2 " ~}^{\prime \prime}\)
Gerzog Mallet
weight: 10oz [284g] head diameter: 25 mm


Stainless steel head with replaceable nylon caps.

Stainless steel handle.
gS \(59.7570 \quad 71 / 2^{\prime \prime}\) mallet gS 59.7571 nylon cap only

Mead Mallet
weight: 110z [311g] head diameter: 20 mm

Stainless steel head with aluminum handle.

Convex/flat surfaces.
gS 59.7605 7 1/4"
Cottle Mallet
weight: 12 oz [340g]
head diameter: 30 mm



Solid stainless steel.
Short handle.
gS 59.7840 6 1/2"
Crane Mallet
weight: 11oz [311g]
head diameter: 32mm


Stainless steel head with smooth phenolic handle.
gS 59.7641 9"
Phenolic Handle Mallet
weight: 12oz [340g] head diameter: 30mm


Phenolic head and handle.
gS \(59.7873 \quad 91 / 2 "\)

\section*{Phenolic Mallet}
weight: 140z [397g]
head diameter: 60 mm

Solid stainless steel.
gS 59.7821 \({ }^{\prime \prime}\)
Cloward-style Mallet weight: 14oz [397g] head diameter: 25 mm

Stainless steel head with aluminum handle.
gS \(59.8670 \quad 91 / \mathbf{2 " ~}^{\prime \prime}\)
Bergman Mallet
weight: 1lb 10z [482g] head diameter: 45 mm


Stainless steel head with aluminum handle.
gS 59.7710 9 1/2"

\section*{Ortho Mallet}
weight: 1lb 2 oz [510g] head diameter: \(30 \mathrm{~mm} / 40 \mathrm{~mm}\)


Solid stainless steel. Short handle.
gS \(59.7845{ }^{7 \prime \prime}\)
Crane Mallet
weight: 1lb 3oz [538g] head diameter: 38mm

Stainless steel head with one nylon cap/one solid end and 13 mm slot. Green silicone handle.
gS \(59.881081 / 2^{\prime \prime}\)
gMallet Slotted
weight: 1lb 5oz [595g] head diameter: 35 mm

Stainless steel head with smooth phenolic handle.
gS 59.7642 9"
Phenolic Handle Mallet
weight: 1lb 4oz [570g] head diameter: 35 mm

Solid stainless steel.
gS \(59.7580 \quad\) 8"

\section*{Kirk Mallet}
weight: 1lb \(60 z\) [624g]
head diameter: 38mm


Stainless steel head with aluminum handle.
gS 59.7650 9 1/2"
Ombredanne Mallet weight: 1lb 9oz [708g] head diameter: 40 mm


Stainless steel head with smooth phenolic handle.
gS 59.7644 9"
Phenolic Handle Mallet weight: 1lb 11oz [770g] head diameter: 40 mm
Stainless steel head with grooved phenolic handle.
gS 59.7885 10 1/2"
Phenolic Handle Mallet weight: 1 lb 8 oz [680g] head diameter: 32mm
\(\qquad\)


Stainless steel head with black plastic handle.
gS \(59.7880 \quad 10\) 1/2"
Plastic Handle Mallet
weight: 1lb 10oz [737g] head diameter: 35 mm

Aluminum head and handle.
gS 59.7910 9"
Meyerding Mallet
weight: 1lb 12 oz [792g]
head diameter: 51 mm

gS 59.7628 \(71 / 4^{\prime \prime}\)
Heath Mallet
weight: 1lb 15oz [879g]
head diameter: 40 mm
Solid stainless steel.


Stainless steel head with aluminum handle.
gS \(59.762971 / 4 "\)
Heath Mallet weight: 2lbs [906g] head diameter: 45 mm

Solid stainless steel.
gS \(59.7660{ }^{11 "}\)
Ortho Mallet
weight: 2lbs 2oz [964g] head diameter: 35 mm

gS \(59.8900{ }^{11 "}\)
He-Man Mallet
weight: 2lbs [906g] head diameter: \(38 / 33 / 24 \mathrm{~mm}\)


Stainless steel head with grooved phenolic handle.
\(\qquad\)


gS 59.7627 10"

\section*{Ortho Mallet}
weight: 2lbs 3oz [1000g]
head diameter: 38 mm


Solid stainless steel.
gSource.

Stainless steel head with grooved phenolic handle.
gS \(59.7890 \quad 10\) 1/2"
Phenolic Handle Heavy Mallet
weight: 2lbs 9oz [1162g] head diameter: 45 mm


\section*{did you know...?}

A mallet is a kind of hammer with a relatively large head. The term is descriptive of the overall size and proportions of the tool, but not the materials it may be made of. The main function is to drive instruments and exert force on osteotomes, chisels, gouges, etc. It is mostly used in orthopedic surgery, particularly bone grafting.

Repercussion can be a problem, especially when using a heavy mallet to strike metal objects. The Repercussion Free Mallet, gS 59.7878 on page 59/8, is a specialized mallet helpful in minimizing damage to the struck surface and in controlling striking force with minimal rebound from the struck surface. The minimal rebound is helpful in avoiding accidental damage to precision work, especially in tight locations.

Dead blow mallets typically have an internal cavity partially filled with steel shot. This modification evens out the time-impulse curve of the impact, enabling a more powerful blow to be delivered without risk of marring the target. Compared to a conventional mallet, the dead blow mallet conveys less peak force spread over a longer time interval. Be sure to select the proper mallet size as failure to do so may cause separation of handle and head or breakage of head.

Solid stainless steel.
gS 59.7670 10 1/2"
Ortho Heavy Mallet
weight: 3lbs 3oz [1446g] head diameter: 50 mm



gS \(60.060061 / 4 "\)
glmpactor, Hibbs Bone 3/8" x 3/4"
cross serrated end


\[
\begin{array}{llll}
\text { gS } 60.1801 & 7 " & 10 \mathrm{~mm} \times 4.3 \mathrm{~mm} \text { micro offset } \\
\text { gS } 60.1802 & 7 " & 10 \mathrm{~mm} \times 4.3 \mathrm{~mm} \text { micro lateral } \\
\text { gS } 60.1803 & 81 / 2^{\prime \prime} & 7 \mathrm{~mm} \times 12.5 \mathrm{~mm} \text { standard } \\
\text { gS } 60.1804 & 81 / 2^{\prime \prime} & 7 \mathrm{~mm} \times 12.5 \mathrm{~mm} \text { standard guarded } \\
\text { gS } 60.1805 & 8 & 1 / 2^{\prime \prime} & 10 \mathrm{~mm} \times 13 \mathrm{~mm} \text { wide } \\
\text { gS 60.1806 } & 81 / 2^{\prime \prime} & 10 \mathrm{~mm} \times 13 \mathrm{~mm} \text { wide guarded } \\
\text { gS } 60.1807 & 81 / 2^{\prime \prime} & 11.5 \mathrm{~mm} \times 6.5 \mathrm{~mm} \text { offset } \\
\text { gS } 60.1808 & 8 & 1 / 2^{\prime \prime} & 12.5 \mathrm{~mm} \times 6 \mathrm{~mm} \text { narrow } \\
\text { gS } 60.1809 & 81 / 2^{\prime \prime} & 16 \mathrm{~mm} \times 6.5 \mathrm{~mm} \text { angled }
\end{array}
\]

\section*{Lumbar and Cervical Impactor} serrated end


gS \(60.2764 \quad 10 "\)
gGraft Holder/Impactor Forceps, Bone
6.4 mm
cross serrated end


Bone Tamp
\(9.5 \mathrm{~mm}\left[.375^{\prime \prime}\right]\) cross serrated end

\section*{gSource.}


gS \(62.63987^{7 \prime}\)
Polokoff Rasp
3 mm and 4 mm plain serrated straight

gS \(61.64207 "\)
Bone File \#10
5 mm plain serrated curved up and straight
gSource.

gS 62.64008 1/2"
Polokoff Rasp 6 mm plain serrated straight

gS \(61.64557^{\prime \prime}\)
Bone File \#33
6 mm and 5 mm plain serrated angled up and straight



gS \(61.6511 \quad 7 "\)
Miller Colburn Bone File \#1 5 mm and 7 mm cross serrated straight

gS 61.6501 7"
Miller Colburn Bone File \#1 5 mm and 7 mm plain serrated straight, downward cutting

gS 61.65127 1/2"
Miller Colburn Bone File \#2
5 mm and 4.5 mm cross serrated curved up and straight

gS 61.6502 7"
Miller Colburn Bone File \#2 7 mm and 6 mm plain serrated curved up and straight, downward cutting

gS \(61.65037^{\prime \prime}\)
Miller Colburn Bone File \#3
7 mm and 5 mm plain serrated curved up and straight, downward cutting

gS \(61.650571 / \mathbf{2 " ~}^{\prime \prime}\)
Miller Colburn Bone File \#5 6 mm and 5.5 mm plain serrated straight, downward cutting


\section*{gS \(61.650471 / 2 "\)}

Miller Colburn Bone File \#4
5 mm and 4 mm plain serrated straight, downward cutting

gS \(62.1670 \quad 81 / \mathbf{2 " ~}^{\prime \prime}\)

\section*{Maltz Rasp}

8mm coarse plain serrated straight up and downward cutting


Bone Rasp
13mm fine and coarse serrated straight

\section*{61-62}

gSource.

gS 62.1720 fine serrated gS 62.1730 coarse serrated

Lewis Rasp
7 1/2", 8mm straight


gS 61.6725 str gS 61.6726 cvd

Diamond Nose Rasp 7 1/2"
7 mm

gS 62.1500 8"
Aufricht Rasp
9 mm coarse serrated curved up forward cutting


\section*{61-62/8 - bone files and rasps}

TC = Tungsten Carbide


gS 61.68411 very fine
gS 61.68422 fine
gS 61.68433 fine
gS 61.68444 coarse
gS 61.68455 coarse
gS 61.68466 coarse
gS 61.68477 coarse
gS 61.68488 very coarse

\section*{Rasp}

8 1/2" TC
7 mm downward cutting serrated


Useful for bone contouring in nasal reconstructive procedures.
gS 61.68558 1/2" TC
Glabella Rasp
5.5 mm straight downward cutting, serrated


Useful in facilitating a discectomy in anterior lumbar fusion and non-fusion procedures. Double handed grip provides maximum control.

One side of rasp is plain serrated and other side is cross serrated. straight, 9" plastic handle, black


\section*{61-62/10 - bone files and rasps}


Four sided rasp with convex and flat blades.
gS 62.75488 1/2"
Fomon Rasp
8mm fine serrated straight


Four sided rasp with convex and flat blades.

Kleinert Kutz Rasp
8 mm fine and coarse serrated straight, serrated handle


Four sided rasp with convex and flat blades.
gS \(62.755081 / \mathbf{2 "}^{\prime \prime}\)
Fomon Rasp
8mm coarse serrated straight




\section*{61-62/12 - bone files and rasps}

\section*{did you know... ?}

Rhinoplasty describes an array of operative techniques that can be used to alter the aesthetic and functional properties of the nose. Surgical access to the nose can be gained via incisions placed inside the nose (endonasal approaches) or via incisions placed inside the nose combined with incisions placed outside the nostrils (external approach), usually on the columella, the strip of skin running from the tip of the nose to the upper lip which separates the nostrils.

War related injuries were a driving force behind most plastic surgery developments during the late 1800's and early 1900's. World War I catapulted plastic surgery into a new and higher realm. Previously physicians did not treat so many and such extensive facial and head injuries. Shattered jaws, blown-off noses and lips, and gaping skull wounds caused by modern weapons required innovative restorative procedures. Some of the best medical talent in Britain, France, Germany, Russia, Austria, and Hungary devoted themselves to restoring the faces of those injured during and after World War I. In the United States, plastic surgeons like Varaztad Kazanjian of Boston, and Vilray Blair of St. Louis served many in need during those years.

The first published account of a modern endonasal rhinoplasty can be traced to an American otolaryngologist, John Orlando Roe. His original article published in 1887 was titled "The deformity termed 'pug-nose' and its correction, by a simple operation" and described the treatment of saddle nose deformities. In 1892, Robert F. Weir, another American surgeon, also published his techniques for correcting the saddled nose.

In 1898, Jacques Joseph, an orthopedic surgeon by training, presented his concepts of nasal surgery to the Medical Society of Berlin. Many aspiring rhinoplasty surgeons traveled to Germany to watch Dr. Joseph perform his rhinoplasties. His general reputation as the father of modern rhinoplasty is
supported by his influence in shaping many rhinoplasty concepts and techniques. Dr. Joseph was well-known for developing and teaching the endonasal rhinoplasty procedure. His rhinoplasties were so popular, among Berliners he was known as "Nasen-Joseph" (Nose-Joseph) or "Noseph". Many of the basic rhinoplasty maneuvers remain essentially the same today as when Dr. Joseph first described them. Dr. Joseph's concepts and techniques were further disseminated, especially in the United States, by surgeons such as Gustav Aufricht, Joseph Safian, and Samuel Fomon. Samuel Fomon disseminated Dr. Joseph's techniques in the United States in the 1950's and helped educate many early modern rhinoplasty surgeons, such as Maurice Cottle of Chicago and Irving Goldman of New York.

Born in Königsberg, Prussia in 1865, Dr. Joseph was a student of medicine at the Friedrich Wilhelm University in Berlin from 1885 to 1889. In 1892 he joined the staff of the Berlin University Clinic for Orthopaedic Surgery. In 1904, he published his first report on the simultaneous, intranasal correction of a hump nose with the correction of the front nasal septum. In 1916, he was appointed head of the newly founded Department of Facial Plastic Surgery at the Ear, Nose and Throat Clinic at the Charité by the Prussian Ministry of Education and Cultural Affairs. In 1928 and 1929 the first two sections of his book on 'Nasal plastic surgery' were published and in 1931 he published his most notable work 'Nasenplastik und Sonstige Gesichtsplastik Nebst Mammaplastik' which revolutionized the surgical approach to aesthetic deformities of the nose. This book is considered a milestone in plastic surgery. He passed away in 1934.

The Joseph Rasp, gS 62.1710, is shown on page 6 in this section. The Aufricht Rasps, gS 62.1500 and gS 62.1520 are shown on page 7, along with the Cottle Rasp, gS 62.1660. The Fomon Rasps are shown on page 10, gS 62.7550 and 62.7548 .

gS \(63.48116 "\)
gS \(63.481263 / 4\) "
Cleveland Bone Cutting Forceps angled delicate


\begin{tabular}{lll} 
gS 63.4980 & 5 & \(1 / 2^{\prime \prime}\) \\
gS 63.4981 & \(63 / 4^{\prime \prime}\) \\
gS 63.4982 & 7 & \(1 / 2^{\prime \prime}\) \\
gS 63.4983 & \(81 / 2^{\prime \prime}\)
\end{tabular}

Liston Bone Cutting Forceps straight

```

gS $63.5100 \quad 51 / \mathbf{2 " ~}^{\prime \prime}$

```
gS \(63.510163 / 4 "\)
gS \(63.510271 / \mathbf{2 " ~}^{\prime \prime}\)
gS 63.51038 1/2"
Liston Bone Cutting Forceps angled






McIndoe Bone Cutting Forceps angled, very delicate jaw

gS 63.4740 10"
Stille-Horsley Bone Cutting Forceps angled


gS \(63.4660{ }^{11 "}\)
Stille-Liston Bone Cutting Forceps straight

gS \(63.4700{ }^{11 "}\)
Stille-Liston Bone Cutting Forceps angled on flat

gS \(63.4661 \quad 10\) 1/2"
Stille-Liston Bone Cutting Forceps \(90^{\circ}\) angled jaw

Roos First Rib Shears right angled jaw with hook


\section*{64/2 - rib shears}

\section*{did you know... ?}

The Bethune Rib Shears, as shown on page 1 in this section, were designed by Dr. Norman Bethune, a Canadian thoracic surgeon. He provided medical services to the poor in Canada, to the Republicans in the Spanish Civil War, and to the Chinese during their invasion by Japan.

Dr. Bethune was born in Gravenhurst, Ontario in 1890. He left medical school at the University of Toronto in 1914 to enlist in the Canadian Army. Wounded in action in France in 1915, he went back to the university to complete his medical studies. After graduation he joined the Royal Navy and then the Canadian Air Force. During the early 1920's, he pursued postgraduate studies in medicine in London and Edinburgh, where he was elected a Fellow of the Royal College of Surgeons in 1922. In 1924 he opened a private medical practice in Detroit, Michigan. Two years later he contracted tuberculosis (TB) in both lungs, and sought treatment at the Trudeau Sanatorium in Saranac Lake, New York. In the 1920's the established treatment for TB was total bed rest in a sanatorium. There he learned of a radical new treatment for TB called pneumothorax, which involved artificially collapsing the tubercular (diseased) lung, thus allowing it to rest and heal itself. The physicians at Trudeau thought this procedure was too new and risky, but Dr. Bethune insisted and eventually persuaded his reluctant doctors to perform the potentially fatal operation. Its success and his rapid recovery inspired him to give up private practice and join the medical search for a cure of the disease.

In 1928 he became the first assistant of Dr. Edward Archibald, the Canadian pioneer in thoracic surgery at McGill University in Montreal, Quebec. Over the next eight years, Dr. Bethune's invention of numerous operating instruments, his writings in medical journals, and his daring surgical techniques raised him to prominence in the international medical community. In the early 1930's, as the Depression deepened in Montreal, Dr. Bethune became more conscious of the relationship between social and economic conditions and the incidence of tuberculosis. Through his concern for the welfare of those who were unable to afford medical treatment, he opened a free clinic. In 1935 he attended the International Physiological Congress in Moscow. His purpose was to examine the system of socialized medicine in operation in the U.S.S.R. Upon returning to Canada, he organized a campaign to promote the introduction of a state medical care system. His open and persistent advocacy of his views alienated him from many of his professional colleagues and in 1936 he joined the Communist Party. Shortly after the outbreak of the Spanish Civil War in 1936, he resigned his hospital position and offered his services to the Spanish Republican government. Dr. Bethune accepted an
invitation from the Committee to Aid Spanish Democracy to head the Canadian Medical Unit in Madrid. He joined the Mackenzie-Papineau Battalion which was composed of Canadian communists and other leftists. Following a tour, he found a frequent cause of death on the battlefield was from medical shock brought on by loss of blood. Dr. Bethune conceived the idea of administering blood transfusions on the spot and developed the world's first mobile medical unit. The unit contained dressings for 500 wounds, and enough supplies and medicine for 100 operations. He organized a service to collect blood from donors and deliver the bottled blood in refrigerated trucks to the wounded at the front which saved many lives.

Dr. Bethune returned to Canada in 1937 after feeling that he could no longer function within the bureaucracy organized by the military medical forces in Republican Spain. He then set off on a North American tour to raise money for the blood transfusion service. During the tour, Japanese forces escalated an earlier invasion of China. This prompted Dr. Bethune to travel to Yan'an in the Shanbei region of Shaanxi province in China where he joined the Chinese Communists led by Mao Zedong in their struggle against the Japanese invaders. In the mountainous area west of Beijing he put together a medical field service and constructed makeshift hospitals throughout the region, wrote textbooks on elementary medicine and surgery, and began training young Chinese in medical techniques. He led his mobile medical unit through the Wu Tai mountains of Shaanxi province and across the Hebei plains to inspect personnel, revamp hospitals, and treat the wounded. During much of the time Dr. Bethune's unit was behind Japanese lines. They were frequently called to battles and sometimes needed to set up their operating theater within three miles of where the firing was taking place. During an operation in the field, he nicked his finger. Because there were no surgical gloves, the wound became infected, quickly leading to blood poisoning and his death in 1939.

During the time of the Cultural Revolution (19661976) the Chinese Communist leadership used Dr. Bethune as a symbol of selflessness, dedication, and responsibility -- characteristics that they wanted the Chinese people to adopt. They published hundreds of millions of copies of an essay written by Mao Zedong called "In Memory of Norman Bethune". Everyone was expected to read it, and many committed it to memory. Since the 1960's through books, movies, and study in the schools, Dr. Bethune became a national hero in China. In 1972 in Canada, the federal government declared him "a Canadian of national historical significance". A portion of the home in which he was born was converted into a museum and opened in 1976 as the Bethune Memorial Home.

ID = Inside Diameter
OD = Outside Diameter

Cutter removes a tiny cylinder of bone around tip of wire.

Obturator helps to prevent potential blockage by residual tissue.


Designed for bone biopsy. Can also be used to help remove broken bone screws and buried K-wire.


Gigli chain saws are intended for single use only due to flesh and bone which can become embedded in the chain saw.

gS 65.7120

gS 65.7175
gS 65.7120 chain saw 9" [23cm]
gS 65.7130 chain saw 12 " [ 30 cm ]
gS 65.7135 chain saw 16" [40cm]
gS 65.7140 chain saw 20 " [ 50 cm ]
gS 65.7150 chain saw 28 " [ 70 cm ]
gS 65.7170 T-handle 2 1/2"
gS 65.7175 loop style handle 3 1/2"
Gigli Saw Blades
and Handles

gSource.
gS \(65.7213 \quad 13{ }^{\prime \prime}\)
Poppen Gigli Saw Guide
\(\qquad\) gS \(65.70109^{\prime \prime}\)

Langenbeck Metacarpal Saw
gSource.
 Joseph Bone Saw 7"
gS \(65.812063 / 4\) " blade gS 65.8125 8" blade

Liston Amputation Knife

gS \(65.7440 \quad 11\) 1/2"
Charriere Amputation Saw
chrome ring handle 8" stainless steel blade
gS \(65.7450 \quad 14\) " handle \& 2 blades gS 65.745210 mm blade only gS 65.745414 mm blade only

Charriere Amputation Saw chrome ring handle stainless steel blades


Satterlee Amputation Saw chrome ring handle 10 " stainless steel blade


\section*{65/4 - trephines - bone saws}

\section*{did you know... ?}

The Liston Amputation Knife, as shown on page 65/2, is a type of knife used in surgical amputation, the intentional removal of a limb or body part. It is performed to remove diseased tissue, malignant tumors, or as a result of severe trauma to a body part, such as an arm, leg, hand, foot, finger or toe.

The knife was named after Robert Liston, a Scottish surgeon noted for his skill and speed. In an era prior to anesthetics, having these skills made a difference in terms of a patient's pain and survival. He is said to have been able to perform removal of a limb in an amputation in 28 seconds.

Born in 1794 in Scotland, he attended medical school at Edinburgh University. He became a surgeon at the Royal Infirmary and a lecturer at the University in 1818. He earned a reputation not only in Scotland, but in Europe and America as a daring and successful surgeon. It is said that "the gleam of his knife was followed so instantaneously by the sounds of sawing as to make the two actions appear almost simultaneous". In 1835, he became professor of clinical surgery at University College, London. In 1846 he used an anesthetic in a public operation in London in 1846, the first time this had been done. He passed away in 1847.

The Gigli Saw, as shown on page 65/1, is named for Leonardo Gigli, a nineteenth-century Italian physician who used it while performing surgery. It is a flexible wire saw used by surgeons for bone cutting, mainly during amputations where bones have to be cut smoothly at the level of amputation. It consists of long thin tempered steel blades arranged in an oval shape, with finger rings at either end. Gigli saws were also known to be kept hidden in the clothing of British secret agents during World War II who used them as an escape device when needed.

Born in Florence in 1863, Dr. Gigli also received his degree in medicine and surgery in Florence in 1889. He worked in Florence as an assistant to the professor of clinical pediatric surgery, and then as an assistant in obstetrics and gynecology under Professor Domenico Chiara. After Professor Chiara's death in 1891, Dr. Gigli left Italy and went to Paris to work under Étienne Stéphane Tarnier, an obstetrician. He then went to London and Wroclaw, Poland, where he worked under Professor Henry Fritsch from 1892 to 1893. While in Wroclaw he was able to attend surgery with Jan Mikulicz-Radecki. During this successful and rewarding period, Dr. Gigli proposed the lateralized pubiotomy (Gigli's operation) for safe delivery of a fetus in cases of maternal pelvic deformities. Inspired by the sight of a jagged knife, he conceived his wire saw to simplify the procedure. In 1894 he successfully tested a modified saw type with a whalebone guide for the preparation of osteoplastic cranial flaps.

He returned to Florence in 1894 to work at the Hospital of Santa Maria Nuova, and continued as a proponent of the lateral pubiotomy using the wire saw, although he did not receive the support of his colleagues in Italy. He described the use of his saw for cutting other bones, except the skull, in 1897. Professor Alfred Obalinski of Kraków also described its use for craniotomy during the same year. In 1899 Dr. Gigli became director of the Santa Maria Nuovo Hospital. He resigned in 1901 and worked in private practice until he passed away in 1908.


Delicate jaws for soft tissue and cancellous bone only.
gS 66.3602 straight
gS 66.3604 slight curve
gS \(66.360690^{\circ}\)
Friedman Rongeur Micro
5 1/2"
1.7 mm bite


\section*{66/2 - single action bone rongeurs}

Friedman Rongeur curved
3 mm bite

\begin{tabular}{lll} 
& & bite \\
gS 66.3630 & straight & 2 mm \\
gS 66.3619 & straight & 3 mm \\
gS 66.3616 & slight curve & 2 mm \\
gS 66.3617 & slight curve & 3 mm \\
gS 66.3620 & slight curve & 4 mm \\
gS 66.3621 & full curve & 3 mm
\end{tabular}

Friedman Rongeur
5 1/2"

gS \(66.366030^{\circ}\)
gS \(66.367045^{\circ}\)
gS \(66.368090^{\circ}\)

\section*{Blumenthal Rongeur}

6"
3 mm bite

\(\wp\)

gS 66.3580 straight gS 66.3600 curved Lempert Rongeur 6"
3 mm bite

gSource.

\section*{66/4 - single action bone rongeurs}


5 mm curved
gS 66.3771 curved gS 66.3765 curved
gS 66.3772 full curve

\section*{Luer Rongeur}

6"

gS 66.3691 straight
gS 66.3692 slight curve
gS 66.3693 full curve
Luer Rongeur
6 1/2"
3 mm bite


\section*{66/6 - single action bone rongeurs}

\begin{tabular}{ll} 
gS 66.4020 & straight \\
gS 66.4028 & straight \\
gS 66.4060 & curved \\
gS 66.4068 & curved \\
Adson Rongeur \\
8"
\end{tabular}

> bite
> 7 mm 8 mm 7 mm 8 mm

Adson Rongeur
8"


gS 66.4040 8"
Rat Tooth Rongeur straight
8 mm bite with teeth

\section*{did you know... ?}

Rongeurs are also called bone biters or bone nibblers, as their main function is to cut or remove small pieces of tissue or bone. Their hollowed, cup like, sharp working ends are similar to a curette. They are available in varying sizes and styles, in straight or curved patterns, with a single-action or double-action joint. Selection of size and style is related to the size and type of bone, as certain rongeurs are designed for use on soft tissue and cancellous bone only.

Popular types include Beyer (page 8), Ruskin (pages \(9-11\) ), and Leksell (pages 11-12). Double-action models, such as the Ruskin and Leksell, provide the surgeon with much more power, causing less hand fatigue.

Because bone is living tissue, it is important that these instruments be properly maintained, as jagged cutting surfaces could damage the bone and delay proper healing.

\section*{66/8 - double action bone rongeurs}


gS \(66.6620{ }^{6 \prime}\)
Kleinert-Kutz Rongeur curved 3 mm bite


\begin{tabular}{lll} 
& & bite \\
gS 66.6230 & straight & 2 mm \\
gS 66.6250 & straight & 3 mm \\
gS 66.6252 & straight & 4 mm \\
gS 66.6253 & straight & 5 mm \\
& & \\
gS 66.6255 & curved & 2 mm \\
gS 66.6256 & curved & 3 mm \\
gS 66.6257 & curved & 4 mm \\
gS 66.6258 & curved & 5 mm
\end{tabular}

Ruskin Rongeur
(Boehler)
6


bite
gS \(66.6260 \quad 71 / 2^{\prime \prime} 4 \mathrm{~mm}\) gS \(66.626571 / 2^{\prime \prime} 5 \mathrm{~mm}\) gS \(66.628071 / 2^{\prime \prime} 6 \mathrm{~mm}\) gS \(66.62677^{\prime \prime} \quad 7 \mathrm{~mm}\)

Ruskin Rongeur
straight

bite
gS \(66.6270 \quad 71 / 2^{\prime \prime} \quad 4 \mathrm{~mm}\)
gS \(66.627571 / 2^{\prime \prime} \quad 5 \mathrm{~mm}\)
gS \(66.631071 / 2 " 6 m m\)
gS 66.6277 7" \(7 m m\)
gS 66.6335 9" \(^{\prime \prime} \quad 5 \mathrm{~mm}\)
gS 66.6336 9" 6 mm gS 66.6337 9" 7 mm

Ruskin Rongeur
curved

gSource.


gS 66.59403 mm
gS 66.59504 mm
gS 66.59705 mm
gS 66.59806 mm
gS 66.59907 mm
gS 66.59918 mm

\section*{Leksell Rongeur}

9 1/2"
strongly angled jaw

gSource.


66/14 - double action bone rongeurs

bite
gS 66.47903 mm gS 66.48004 mm gS 66.48205 mm gS \(66.4840 \quad 8 \mathrm{~mm}\) gS \(66.4860 \quad 12 \mathrm{~mm}\)

\section*{Sypert Rongeur}

14 1/2"
without teeth

gSource.


\section*{66/16 - double action bone rongeurs}


10 mm straight


10 mm curved


17 mm straight


17 mm curved
bite
gS 66.5611 \(91 / 2^{\prime \prime} \quad\) straight 17 mm
gS 66.5612 \(91 / 2^{\prime \prime} \quad\) curved 17 mm
gS \(66.5620 \quad 10\) 1/2"
gS \(66.5640 \quad 10\) 1/2"
gS \(66.5651 \quad 10\) 1/2"
gS 66.565210 1/2"
Stille-Luer Rongeur

square

oval
gS 66.6358 square
gS 66.6359 oval
Sauerbruch Rongeur
12"
20 mm bite
gSource.

\section*{graspers and spinal rongeurs identification chart - 67-68/1}


\section*{Shaft Length}


Jaw bite styles for rongeurs

gSource spinal rongeurs and punches have bite size etched on handles.

Handle styles

Refer to Sections 69-72 for gSource spinal punches.

Please inquire about the availability of any size and style not shown in this section.

\section*{67-68/2 - clean wave spinal rongeurs}

\section*{Catch a new wave to easy cleaning.}

In most spinal rongeurs, tissue and debris can collect and remain trapped between the main body and slider. This build-up can impede the smooth function of the instrument and prevent proper sterilization as a result of not being completely cleaned prior to sterilization.

The Clean Wave spinal rongeurs have a slider with a wavelike shaped design which allows cleaning utensils to easily reach through the recesses and openings between the slider and the main body for cleaning prior to sterilization.
- Wavelike shape also helps to reduce friction between the slider and main body, providing a smooth function.
- Straight, up or down bite styles.
- Caspar, Cushing, Love-Gruenwald and Spurling patterns available. See pages 3-4.
- Made from German stainless steel.
- Satin finish helps to reduce glare.


\title{
clean wave spinal rongeurs - 67-68/3
}

```

gS 67.8300 straight
gS 67.8320 up
gS 67.8340 down

```

Clean Wave Cushing Rongeur
7 " shaft, \(2 \times 10 \mathrm{~mm}\) bite
finger ring handle


up

down

\section*{CE}
\(3 \times 10 \mathrm{~mm}\)
gS 67.8800 straight
gS 67.8820 up
gS 67.8840 down

\section*{Clean Wave Love Gruenwald Rongeur}

7" shaft, \(3 \times 10 \mathrm{~mm}\) bite
finger ring handle

\section*{67-68/4 - clean wave spinal rongeurs}


up

down

gS 67.9400 straight
gS 67.9420 up
gS 67.9440 down
Clean Wave Spurling Rongeur
7" shaft, \(4 \times 10 \mathrm{~mm}\) bite
finger ring handle

straight

up

down

व然然
\(2 \times 12 \mathrm{~mm}\)

\(3 \times 12 \mathrm{~mm}\)
\(\overbrace{4 \times 14 m}^{\text {and }}\)
\(4 \times 14 \mathrm{~mm}\)

\begin{tabular}{lccc} 
bite & straight & up & down \\
\(2 \times 12 \mathrm{~mm}\) & gS 67.0222 & gS 67.0242 & gS 67.0232 \\
\(3 \times 12 \mathrm{~mm}\) & gS 67.0223 & gS 67.0243 & gS 67.0233 \\
\(4 \times 14 \mathrm{~mm}\) & gS 67.0224 & gS 67.0244 & gS 67.0234
\end{tabular}

Clean Wave Casper IVD Rongeur
7 1/4" shaft, fenestrated cups, serrated side jaw finger ring handle

\section*{67-68/6 - ivd rongeurs}

straight

up

down

\(2 \times 6 \mathrm{~mm}\)

gS 68.9576 up
gS 68.9577 down

\section*{Decker Rongeur}

6 " shaft, \(2 \times 6 \mathrm{~mm}\) bite
finger ring handle with opening latch


Takahashi IVD Rongeur
5 " shaft, straight
finger ring handle

\section*{gSource.}

shaft
\(5 "\)
\(6^{\prime \prime}\)
\(7 "\)
\(8^{\prime \prime}\)
\(9 "\)
\(10 "\)
\(12 "\)
\begin{tabular}{cc} 
straight & up \\
gS 68.8100 & gS 68.8120 \\
gS 68.8210 & gS 68.8230 \\
gS 68.8300 & gS 68.8320 \\
gS 68.8402 & gS 68.8404 \\
gS 68.8525 & gS 68.8527 \\
gS 68.8602 & gS 68.8604 \\
gS 68.8535 & gS 68.8537
\end{tabular} (
down
gS 68.8140
gS 68.8240
gS 68.8340
gS 68.8406
gS 68.8529
gS 68.8606
gS 68.8539

\section*{Cushing Rongeur}
\(2 \times 10 \mathrm{~mm}\) bite
finger ring handle

up
gS 68.8620 gS 68.8704 gS 68.8820 gS 68.8901 gS 68.8914 gS 68.8924 gS 68.8934
down
gS 68.8640
gS 68.8706
gS 68.8840
gS 68.8903
gS 68.8916
gS 68.8926
gS 68.8936

Love Gruenwald Rongeur
\(3 \times 10 \mathrm{~mm}\) bite
finger ring handle

\section*{67-68/8 - ivd rongeurs}

\begin{tabular}{lc} 
shaft & straight \\
\(5 "\) & gS 68.9000 \\
\(6^{\prime \prime}\) & gS 68.9202 \\
\(7^{\prime \prime}\) & gS 68.9400 \\
\(8^{\prime \prime}\) & gS 68.9502 \\
\(9^{\prime \prime}\) & gS 68.9512 \\
\(10 "\) & gS 68.9522 \\
\(12^{\prime \prime}\) & gS 68.9532
\end{tabular}


\section*{Spurling Rongeur}
\(4 \times 10 \mathrm{~mm}\) bite
finger ring handle

gS 68.8052 straight
gS 68.8054 up
gS 68.8056 down
Cloward Rongeur
\(6 "\) shaft, \(6 \times 10 \mathrm{~mm}\) bite finger ring handle

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 6" shaft bite & straight & up & down &  &  &  \\
\hline \(2 \times 10 \mathrm{~mm}\) & gS 68.8000 & gS 68.8029 & gS 68.8034 & & & \\
\hline \(3 \times 10 \mathrm{~mm}\) & gS 68.8020 & gS 68.8030 & gS 68.8035 & & & \\
\hline \(4 \times 10 \mathrm{~mm}\) & gS 68.8040 & gS 68.8031 & gS 68.8036 & c-mancy & (zamize & \[
S_{\text {sмпит }} \in
\] \\
\hline \(5 \times 10 \mathrm{~mm}\) & gS 68.8050 & gS 68.8032 & gS 68.8037 & \(2 \times 10 \mathrm{~mm}\) & \(3 \times 10 \mathrm{~mm}\) & \(4 \times 10 \mathrm{~mm}\) \\
\hline \(7 "\) shaft
bite & & & & & & \\
\hline \(2 \times 10 \mathrm{~mm}\) & gS 68.7702 & gS 68.7732 & gS 68.7762 & & & \\
\hline \(3 \times 10 \mathrm{~mm}\) & gS 68.7703 & gS 68.7733 & gS 68.7763 & & & \\
\hline \(4 \times 10 \mathrm{~mm}\) & gS 68.7704 & gS 68.7734 & gS 68.7764 & & & \\
\hline \(5 \times 10 \mathrm{~mm}\) & gS 68.7705 & gS 68.7735 & gS 68.7765 & & & \\
\hline 9" shaft bite & & & & & & \\
\hline \(2 \times 10 \mathrm{~mm}\) & gS 68.7892 & gS 68.7929 & gS 68.7959 & & & \\
\hline \(3 \times 10 \mathrm{~mm}\) & gS 68.7900 & gS 68.7930 & gS 68.7960 & & & \\
\hline \(4 \times 10 \mathrm{~mm}\) & gS 68.7904 & gS 68.7934 & gS 68.7964 & & & \\
\hline \(5 \times 10 \mathrm{~mm}\) & gS 68.7905 & gS 68.7935 & gS 68.7965 & & & \\
\hline Schlesin serrated j finger ring & IVD Rongeu dle & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 6" shaft & straight & up & down &  &  \\
\hline bite & straight & up & down & 2x12mm & \\
\hline 2x12mm & gS 68.0202 & gS 68.0212 & - & & \\
\hline \(3 \times 12 \mathrm{~mm}\) & gS 68.0203 & gS 68.0213 & - & & \\
\hline \(4 \times 14 \mathrm{~mm}\) & gS 68.0204 & gS 68.0214 & - & & \(5 \times 14 \mathrm{~mm}\) \\
\hline \(5 \times 14 \mathrm{~mm}\) & gS 68.0205 & gS 68.0215 & - & & \(5 \times 14 \mathrm{~mm}\) \\
\hline 6x16mm & gS 68.0206 & gS 68.0216 & - & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{7" shaft} \\
\hline bite & & & & & \\
\hline 2x12mm & gS 68.0222 & gS 68.0242 & - & & \\
\hline \(3 \times 12 \mathrm{~mm}\) & gS 68.0223 & gS 68.0243 & gS 68.0233 & & \\
\hline \(4 \times 14 \mathrm{~mm}\) & gS 68.0224 & gS 68.0244 & gS 68.0234 & & \\
\hline \(5 \times 14 \mathrm{~mm}\) & gS 68.0225 & gS 68.0245 & - & & \\
\hline 6x16mm & gS 68.0226 & gS 68.0246 & - & & \\
\hline Caspar I fenestrate finger ring & Rongeur , serrated ja dle & & & & \\
\hline
\end{tabular}

\section*{67-68/10 - ivd rongeurs}
gS \(68.9560 \quad 7\) " shaft
Oldberg Rongeur
round 6 mm bite, straight finger ring handle

Useful in facilitating a discectomy in anterior lumbar fusion and non-fusion procedures.


bite
gS \(68.9843 \quad 3 \mathrm{~mm}\)
gS 68.98444 mm
gS 68.9848 8mm
gRongeur, Disc
13" shaft, up, serrated jaws
Ferris-Smith-Kerrison handle


\section*{67-68/12 - graspers rongeurs}

Grooved jaw and adjustable locking ratchet help to provide a fixed hold on grasped tissue.


\section*{Guy ᄃ \\ 5 mm}
gS 68.9805 9" shaft
gGrasper Rongeur
5 mm bite, straight, grooved jaw, ratchet
Ferris-Smith-Kerrison ring handle


5 mm
gS 68.9815 9" shaft
gGrasper Rongeur
5mm bite, straight, grooved jaw
Ferris-Smith-Kerrison ring handle

\section*{Easy2Clean Kerrison Punch identification chart - 69/1}

\(40^{\circ}\) Forward Bite
Thin Foot Plate

\section*{A - Foot Plate}

Foot plate options are:
- Regular: foot plate has a greater thickness useful for lumbar procedures.
- Thin: foot plate has a reduced thickness useful for cervical and thoracic procedures.

\section*{B - Bite Opening}

Size of the bite opening is the distance between the cutting edge and the foot plate when in the open position. A wider opening allows surgeon to excise more bone.

\section*{C - Bone Ejector}

Easy2Clean Kerrison Punch 2mm-6mm bite sizes have a bone ejector incorporated into their design. The bone ejector helps to remove any material (bone, tissue, etc.) caught within the bite opening.
 Surgical Products.

\section*{69/2 - Easy2Clean Kerrison Punch}

\section*{Opens for easy and complete cleaning.}

In most spinal punches, tissue and debris can collect and remain trapped between the main body and slider. This build-up can impede the smooth function of the instrument and prevent proper sterilization as a result of not being completely cleaned prior to sterilization.

The Easy2Clean Kerrison Punch has a hinged slider that opens in order to allow access for easy and complete cleaning inside the main body.
- Punch remains in one piece when opened so there are no loose instrument components.
- Forward angled foot plate provides precise and controlled cutting action.
- Features a thin foot plate design.
- Bone ejector is incorporated into the design of \(2 \mathrm{~mm}-6 \mathrm{~mm}\) bite sizes.
- Made from German stainless steel.
- Satin finish helps to reduce glare.

Please inquire about the availability of any size and style not shown in this section.


3 mm


4 mm


5 mm


6 mm

Shown in open position
gS 69.40811 mm , without ejector
gS 69.40822 mm , with ejector
gS 69.40833 mm , with ejector
gS 69.40844 mm , with ejector
gS 69.40855 mm , with ejector
gS 69.40866 mm , with ejector
Easy2Clean Kerrison Punch 8" forward
Ferris-Smith-Kerrison handle, thin foot plate

\section*{Easy2Clean Kerrison Punch - 69/3}

\section*{Opens for easy and complete cleaning.}

In most spinal punches, tissue and debris can collect and remain trapped between the main body and slider. This build-up can impede the smooth function of the instrument and prevent proper sterilization as a result of not being completely cleaned prior to sterilization.

The Easy2Clean Kerrison Punch has a hinged slider that opens in order to allow access for easy and complete cleaning inside the main body.
- Punch remains in one piece when opened so there are no loose instrument components.
- Forward angled foot plate provides precise and controlled cutting action.
- Features a thin foot plate design.
- Bone ejector is incorporated into the design of \(2 \mathrm{~mm}-6 \mathrm{~mm}\) bite sizes.
- Made from German stainless steel.
- TiAIN ceramic coating helps to provide improved strength, increased cutting edge hardness, reduced glare and a smooth action.


\section*{69/4 - Easy2Clean Kerrison Punch}

\section*{To open:}

1) Squeeze handle together and hold.
2) While holding handle together, push down on the lever toward the handle horn.

3) Release hold on handle.
4) Pull back slider and lift to open.

Indentification of components:


Shown in closed position

To close:

1) Align and engage slider in grooves on main body.

2) Squeeze handle together and hold.
3) While holding handle together, push lever up to its original position.

4) Release hold on handle.
5) Check instrument funtion to ensure slider is engaged properly.

\section*{Clean Wave Kerrison Punch - 69/5}

\section*{Catch a new wave to easy cleaning.}

In most spinal punches, tissue and debris can collect and remain trapped between the main body and slider. This build-up can impede the smooth function of the instrument and prevent proper sterilization as a result of not being completely cleaned prior to sterilization.

The Clean Wave Kerrison Punch has a slider with a wavelike shaped design which allows cleaning utensils to easily reach through the recesses and openings between the slider and main body for cleaning prior to sterilization.
- Wavelike shape also helps to reduce friction between the slider and main body, providing a smooth function.
- Forward angled foot plate provides precise and controlled cutting action.
- Features a thin foot plate design.
- Bone ejector is incorporated into the design of \(2 \mathrm{~mm}-5 \mathrm{~mm}\) bite sizes.
- Made from German stainless steel.
- Satin finish helps to reduce glare.



\title{
69/6-Easy2Clean and Clean Wave Kerrison Punch
}

\section*{did you know... ?}

Critical items, such as surgical instruments, are associated with a high risk for infection if they are contaminated with any microorganism. Objects that enter tissue or the vascular system must be sterile because any microbial contamination could transmit disease. Meticulous cleaning must precede any sterilization or high-level disinfection. Failure to perform good cleaning can result in sterilization or disinfection failure, and outbreaks of infection can occur. An instrument must be completely cleaned in order to be sterilized properly.
"Cleaning" is the removal of foreign material (e.g., soil, and organic material) from objects and is normally accomplished using water with detergents or enzymatic products. Thorough cleaning is required before high-level disinfection and sterilization because inorganic and organic materials that remain on the surfaces of instruments interfere with the effectiveness of these processes. Also, if soiled materials dry or bake onto the instruments during autoclaving, the removal process becomes more difficult and the disinfection or sterilization process less effective or even ineffective. Surgical instruments should be presoaked or rinsed to prevent drying of blood and to soften or remove blood from the instruments.

Surgical instruments with multiple components must be disassembled and equipment such as endoscopes that have crevices, joints, and channels are more difficult to clean than flat-surface equipment. Cleaning is done manually in use areas without mechanical units (ultrasonic cleaners or washer-disinfectors) or for fragile or difficult-to-clean instruments. With manual cleaning, the two essential components are friction (rubbing/scrubbing the soiled area with a brush) and fluidics (fluids under pressure), used to remove soil and debris from internal channels after brushing and when the design does not allow passage of a brush through a channel. When a washer-disinfector is used, care should be taken in loading instruments: hinged instruments should be opened fully to allow adequate contact with the detergent solution; stacking of instruments in washers should be avoided; and instruments should be disassembled as much as possible.

The issue with a standard spinal punch is that tissue and debris can collect and remain "trapped" inside the shaft between the "main body" and "slider". This build-up can impede the smooth function and prevent proper sterilization if not completely cleaned. The instrument can also be damaged if it is scraped or struck against another object in an effort to dislodge any debris. The build-up and debris that is not completely cleaned and removed prior to disinfection and sterilization is not only unsanitary it can cause infection. The bioburden, or number of microorganisms on a contaminated item, that collects inside the shaft can form a "hard shell" which protects the microorganisms from sterilization. The bioburden can transmit infectious disease and sterilized bioburden can act as a pyrogen, or fever inducing substance. Bioburden increases risk factors for surgical site infection.

The Easy2Clean Kerrison Punch, as shown on pages 1-4 in this section, was designed to be cleaned. With a slider that opens in order to allow for easy and complete cleaning, it remains in one piece when opened for ease of reassembly, eliminating the possibility of losing or switching parts.

The Clean Wave Kerrison Punch, as shown on page 5 in this section, was also designed to be cleaned. With a wavelike shaped slider, it allows cleaning utensils to easily reach through the recesses and openings between the main body and slider for cleaning prior to sterilization.

\title{
spinal punches identification chart - 70/1
}


\section*{Shaft Length}

forward

up

down

\section*{Regular foot plate bite styles}


Thin foot plate bite styles


\section*{Features}

Refer to Section 67-68 for gSource spinal rongeurs.
Please inquire about the availability of any size and style not shown in this section.

\section*{70/2-spinal punches identification chart}

\section*{Kerrison Handle}

handle height: 6"


Love-Kerrison Standard Handle
handle height: 6"


Love-Kerrison Handle
handle height: 6"
gSource spinal rongeurs and punches have bite size etched on handles.
Handle styles


Ferris-Smith-Kerrison Handle handle height: 5 "

Wider grip improves comfort and control.

Biocompatible silicone coated stainless steel handle helps to prevent slippage and provide a secure and comfortable grip.

Ferris-Smith-Kerrison Handle
silicone coated stainless steel handle height: 5"


Ferris-Smith-Kerrison Ring Handle
handle height: \(5^{\prime \prime}\)
gSource spinal rongeurs and punches have bite size etched on handles.
Handle styles

\section*{70/4 - punches with regular foot plate}


\section*{Kerrison Mastoid Punch}

3 1/2" shaft, up
Kerrison handle, regular footplate

curved
gS 70.1530 left
gS 70.1630 right
Foraminotomy Punch
8" shaft, 3mm bite, up

Upward curved shaft and forward angled foot plate make the underside of the foramen accessible. Hinge in upper shaft enables smooth cutting function.
\begin{tabular}{lll} 
bite & 8" shaft & 12" shaft \\
1 mm & gS 70.1290 & gS 70.2001 \\
2 mm & gS 70.1300 & gS 70.2002 \\
3 mm & gS 70.1330 & gS 70.2003 \\
4 mm & gS 70.1340 & gS 70.2004 \\
5 mm & gS 70.1350 & gS 70.2005 \\
6 mm & gS 70.1360 & gS 70.2006
\end{tabular}

Foraminotomy Punch
strong curved forward
Ferris-Smith-Kerrison handle, regular foot plate


\section*{70/6 - punches with regular foot plate}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{7" shaft} \\
\hline bite & forward & up & down \\
\hline 1 mm & gS 70.5711 & gS 70.5721 & gS 70.5701 \\
\hline 2 mm & gS 70.5712 & gS 70.5722 & gS 70.5702 \\
\hline 3 mm & gS 70.5713 & gS 70.5723 & gS 70.5703 \\
\hline 4 mm & gS 70.5714 & gS 70.5724 & gS 70.5704 \\
\hline 5 mm & gS 70.5715 & gS 70.5725 & gS 70.5705 \\
\hline 6 mm & gS 70.5716 & gS 70.5726 & gS 70.5706 \\
\hline \multicolumn{4}{|l|}{8" shaft bite} \\
\hline 1 mm & gS 70.5811 & gS 70.5821 & gS 70.5801 \\
\hline 2 mm & gS 70.5812 & gS 70.5822 & gS 70.5802 \\
\hline 3 mm & gS 70.5813 & gS 70.5823 & gS 70.5803 \\
\hline 4 mm & gS 70.5814 & gS 70.5824 & gS 70.5804 \\
\hline 5 mm & gS 70.5815 & gS 70.5825 & gS 70.5805 \\
\hline 6 mm & gS 70.5816 & gS 70.5826 & gS 70.5806 \\
\hline \multicolumn{4}{|l|}{12" shaft bite} \\
\hline 1 mm & gS 70.9121 & - & - \\
\hline 2 mm & gS 70.9122 & - & - \\
\hline 3 mm & gS 70.9123 & - & - \\
\hline 4 mm & gS 70.9124 & - & - \\
\hline 5 mm & gS 70.9125 & - & - \\
\hline 6 mm & gS 70.9126 & - & - \\
\hline
\end{tabular}

Spurling Kerrison Punch
Ferris-Smith-Kerrison handle regular foot plate


8" shaft
bite

2 mm
3 mm
4 mm
5 mm
6 mm
forward
gS 70.7812
gS 70.7813 gS 70.7814 gS 70.7815 gS 70.7816
up
gS 70.7822 gS 70.7823 gS 70.7824 gS 70.7825 gS 70.7826
down
gS 70.7802 gS 70.7803 gS 70.7804 gS 70.7805 gS 70.7806

12 " shaft
bite
2 mm
3 mm
4 mm
5 mm
\(6 \mathrm{~mm} \quad\) gS 70.8126
gS 70.8122 gS 70.8123
gS 70.8124

Love Kerrison Punch
Love-Kerrison handle regular foot plate

\section*{70/8 - punches with regular foot plate}


2 mm


4 mm


6 mm

Useful in facilitating a discectomy in anterior lumbar fusion and non-fusion procedures.
7" shaft
bite
1 mm
2 mm
3 mm
4 mm
5 mm
6 mm
forward
up
gS 71.5721
gS 71.5722
gS 71.5723
gS 71.5724
\[
\text { gS } 71.5725
\]
gS 71.5726
down
gS 71.5701
gS 71.5702
gS 71.5703
gS 71.5704
gS 71.5705
gS 71.5706
8" shaft
bite
1 mm
2 mm
3 mm
gS 71.5811
gS 71.5821
gS 71.5801
gS 71.5802
gS 71.5803
gS 71.5804
gS 71.5805
gS 71.5806
5 mm gS 71.5815
gS 71.5823
gS 71.5824
gS 71.5825
12" shaft
bite
\(1 \mathrm{~mm} \quad\) gS 71.5951
2 mm
3 mm
4 mm
5 mm
6 mm
\begin{tabular}{lll} 
gS 71.5951 & - & - \\
gS 71.5952 & - & - \\
gS 71.5953 & - & - \\
gS 71.5954 & - & - \\
gS 71.5955 & - & -
\end{tabular}

Spurling Kerrison Punch
Ferris-Smith-Kerrison handle thin foot plate

\section*{\(71 / 2\) - punches with thin foot plate}


8" shaft bite 2 mm
3 mm
4 mm
5 mm
6 mm

12" shaft
bite
2 mm
3 mm
4 mm
5 mm
6 mm
forward
gS 71.7812
gS 71.7813 gS 71.7814 gS 71.7815
gS 71.7816
up gS 71.7822
gS 71.7823 gS 71.7824
gS 71.7825
gS 71.7826
down
gS 71.7802 gS 71.7803 gS 71.7804 gS 71.7805 gS 71.7806

\section*{Love Kerrison Punch}

Love-Kerrison handle thin foot plate

\section*{Get a sure grip!}
- Biocompatible silicone coated stainless steel handles help to prevent slippage and provide a secure and comfortable grip.
- Made from German stainless steel with silicone coated handles.
- Colored handles provide easy bite size recognition.
- Available in five standard colors according to bite size (red, blue, lavender, turquoise, green).
- Silicone has excellent resistance to alkaline, saline and acidic solutions.
- Non-fading vibrant colors withstand repeated autoclaving.
- Forward and up bite styles available from stock.
- Quality verified and guaranteed by gSource.

Custom options:
- Color of silicone coated handle
- Shaft length
- Down bite style


\section*{72/2-gPunch with silicone coated handle}


gPunch, Silicone Coated Handle
8" shaft
Ferris-Smith-Kerrison handle
regular foot plate

gS \(73.2810 \quad{ }^{7 \prime}\)
Pediatric Cast Breaker


Wolff Plaster Cast Breaker
\(\qquad\)


gS \(73.2380{ }^{11 "}\)
Hennig Plaster Spreader serrated outside blades


\section*{did you know... ?}

After a bone is broken it needs rest and support to heal properly. Orthopedic doctors use casts to support and protect injured bones. Plaster casts are most often used when a fracture reduction (repositioning of the bone) is performed. The reason plaster is used after repositioning the bone is that plaster can be well molded to the patient, and therefore it can support the bone more precisely. When a bone was out of position, and is manipulated back into position, plaster may be used to help hold the bone in the proper position.

Plaster spreaders are a reverse pincer device with flat blades that are fitted down into a cut made in a plaster cast that is about to be removed. Opening the handles forces the plaster apart.

The Walton Cast Spreader, gS 73.2330 shown on this page, is our most popular casting instrument.

gS \(74.1000 \quad 3\) 1/2" str
Castroviejo Caliper graduated from 0 to 20 mm


gS 74.1010 3 1/2" cvd
Castroviejo Caliper graduated from 0 to 20 mm
measures inside and outside
gS \(74.414041 / 2 "\)
Townley Caliper inch and mm graduations measures up to 4 " \([100 \mathrm{~mm}\) ]



90 mm long delicate blades
gS 74.4148 9"
Neuro Caliper
inch and mm graduations measures up to 5 " [127mm]

Used to measure angles, particularly the range of motion for finger joints.


Used to measure angles, particularly the range of motion for joints such as the hip, knee, elbow or shoulder.
gS 74.2109 1/2"
Moeltgen Goniometer measures 0-180 degrees


Used to measure angles, particularly the range of motion for joints such as the hip, knee, elbow or shoulder.
gS \(74.21808^{\prime \prime}\) gS \(74.2190 \quad 11\) 1/2"
gGoniometer measures 0-180 degrees


\section*{gS \(74.507071 / \mathbf{2 "}^{\prime \prime}\) \\ outside}

Bone Compass
maximum opening 140 mm

gS 74.51008 8"
Bone Compass
maximum opening 110 mm


N

Indispensable tool for measuring k-wires, steinmann pins, rods, and drill bits.

Gauges from diameter 0.7 mm to 6.35 mm [.028" to 1/4"]
gS 74.7800 6 1/2"
K-Wire Ruler and Pin Gauge

```

gS 74.7920 6"
gS 74.7940 8"
gS 74.7980 12"
gS 74.8000 20"

```

Ruler Flexible
inch/mm graduations

Designed to measure the femoral head/neck length. Useful in minimally invasive surgery.

gS 74.5200 handle 4" knurled
gS 74.5210 ruler 40 mm [ \(11 / 2^{\prime \prime}\) ]
gS 74.5220 ruler 80 mm [3"]
gS 74.5230 ruler 120mm [4 3/4"]
Ruler Handle
stainless steel
mm and inch graduations

OAL = Overall Length
WL = Working Length
FR = French gauge


See page 75-76/3 for standard French gauge (FR) illustrations.


\section*{Baron Suction Tube}
stainless, angled \(30^{\circ}\)
with stylette

OAL = Overall Length
WL = Working Length
FR = French gauge SWG = Standard Wire Gauge

OAL FR
gS 75.9401 8 1/2" 12
gS \(75.940281 / 2^{\prime \prime} 15\)
Adson Suction Tube
stainless, angled \(20^{\circ}\) with stylette

See page 75-76/3 for standard French gauge (FR) illustrations.

See page 75-76/4 for SWG dimensions.
\begin{tabular}{|c|c|c|c|}
\hline & OAL & SWG & WL \\
\hline gS 76.2614 & 4" & 14 & 60 mm \\
\hline gS 76.2615 & 4" & 15 & 60 mm \\
\hline gS 76.2616 & 4" & 16 & 60 mm \\
\hline gS 76.2617 & 4" & 17 & 60 mm \\
\hline gS 76.2618 & 4" & 18 & 60 mm \\
\hline gS 76.2619 & 4" & 19 & 60 mm \\
\hline gS 76.2620 & 4" & 20 & 60 mm \\
\hline gS 76.2622 & 4" & 22 & 60 mm \\
\hline gS 76.2624 & 4" & 24 & 60 mm \\
\hline gS 76.2626 & 4" & 26 & 60 mm \\
\hline
\end{tabular}

Rosen Suction Tube
stainless, angled \(30^{\circ}\) with stylette


OAL FR gS 75.3124 \(91 / 2^{\prime \prime} 12\)

Andrews-Pynchon Suction Tube stainless, curved


OAL \(=\) Overall Length
French Gauge Illustrations
gS \(75.3280{ }^{11 "}\)
Yankauer Suction Tube stainless double angled

French Gauge Scale
\begin{tabular}{rrr} 
FR & mm & inch \\
3 & 1.0 & .039 \\
4 & 1.3 & .053 \\
5 & 1.7 & .066 \\
6 & 2.0 & .079 \\
7 & 2.3 & .092 \\
8 & 2.7 & .105 \\
9 & 3.0 & .118 \\
10 & 3.3 & .131 \\
11 & 3.7 & .144 \\
12 & 4.0 & .158 \\
13 & 4.3 & .170 \\
14 & 4.7 & .184 \\
15 & 5.0 & .197 \\
16 & 5.3 & .210 \\
17 & 5.7 & .223 \\
18 & 6.0 & .236 \\
19 & 6.3 & .249 \\
20 & 6.7 & .263 \\
22 & 7.3 & .288 \\
24 & 8.0 & .315 \\
26 & 8.7 & .341 \\
28 & 9.3 & .367 \\
30 & 10.0 & .393 \\
32 & 10.7 & .419 \\
34 & 11.3 & .445 \\
\hline
\end{tabular}

The French Gauge System is commonly used to define the outside diameter of cylindrical medical instruments such as suction tubes. The millimeter diameter can be determined by dividing the French (FR) size by 3 .

The system was developed by Joseph-Frédéric-Benoit Charrière, a 19th century Parisian maker of surgical instruments.

\section*{75-76/4 - suction tubes}

SWG is the British Standard Wire Gauge, also known as Imperial Wire Gauge or British Standard Gauge.

Wire gauge is a standard for wire diameters. Each gauge has a number that represents a specific diameter of wire.

Wire gauge is measured by a device, also known as a gauge, that usually is a round circle with numbers and holes into which wires are fitted to determine their diameter.
\begin{tabular}{rlllll} 
SWG & inch & mm & SWG & inch & mm \\
\(7 / 0\) & .500 & 12.70 & 22 & .0280 & 0.71 \\
\(6 / 0\) & .464 & 11.79 & 23 & .0240 & 0.61 \\
\(5 / 0\) & .432 & 10.97 & 24 & .0220 & 0.56 \\
\(4 / 0\) & .400 & 10.16 & 25 & .0200 & 0.51 \\
\(3 / 0\) & .372 & 9.45 & 26 & .0180 & 0.46 \\
\(2 / 0\) & .348 & 8.84 & 27 & .0164 & 0.42 \\
\(1 / 0\) & .324 & 8.24 & 28 & .0148 & 0.38 \\
1 & .300 & 7.62 & 29 & .0136 & 0.35 \\
2 & .276 & 7.01 & 30 & .0124 & 0.32 \\
3 & .252 & 6.40 & 31 & .0116 & 0.30 \\
4 & .232 & 5.89 & 32 & .0108 & 0.27 \\
5 & .212 & 5.39 & 33 & .0100 & 0.25 \\
6 & .192 & 4.88 & 34 & .0092 & 0.23 \\
7 & .176 & 4.47 & 35 & .0084 & 0.21 \\
8 & .160 & 4.06 & 36 & .0076 & 0.19 \\
9 & .144 & 3.66 & 37 & .0068 & 0.17 \\
10 & .128 & 3.25 & 38 & .0060 & 0.15 \\
11 & .116 & 2.95 & 39 & .0052 & 0.13 \\
12 & .104 & 2.64 & 40 & .0048 & 0.12 \\
13 & .092 & 2.34 & 41 & .0044 & 0.11 \\
14 & .080 & 2.03 & 42 & .0040 & 0.10 \\
15 & .072 & 1.83 & 43 & .0036 & 0.09 \\
16 & .064 & 1.63 & 44 & .0032 & 0.08 \\
17 & .056 & 1.42 & 45 & .0028 & 0.07 \\
18 & .048 & 1.22 & 46 & .0024 & 0.06 \\
19 & .040 & 1.02 & 47 & .0020 & 0.05 \\
20 & .036 & 0.91 & 48 & .0016 & 0.04 \\
21 & .032 & 0.81 & 49 & .0012 & 0.03 \\
& & & 50 & .0010 & 0.02
\end{tabular}

British Standard Wire Gauge (SWG) Dimensions


Hangnail Nipper curved concave jaw smooth handles

\begin{tabular}{lll} 
gS 77.3880 & \(4 "\) & 2 mm \\
gS 77.3890 & \(4 "\) & 4 mm \\
gS 77.3900 & \(4 "\) & 6 mm \\
gS 77.3910 & \(4 "\) & 9 mm \\
gS 77.3920 & \(41 / 2^{\prime \prime}\) & 11 mm \\
gS 77.3940 & \(5 "\) & 14 mm
\end{tabular}

Tissue Nipper smooth handles

Tapered jaw nail splitters have fine pointed tips for splitting thin nails only. If used as a nail nipper, delicate tips can become damaged.

Tips can also be blunted upon request. Please contact gSource Customer Service for more information.
```

gS 77.4410 4"
gS 77.4420 4 1/2"
gS 77.4430 5"
gS 77.4440 6"

```


Nail Splitter
tapered jaw grooved handles

Tapered jaw nail splitters have fine pointed tips for splitting thin nails only. If used as a nail nipper, delicate tips can become damaged.
```

tapered jaw
gS 77.6001 4" delicate
gS 77.6003 4 1/2"
gS 77.6005 5" delicate
gS 77.6007 5'

```
regular jaw
gS \(77.60106 "\)

\section*{Nail Splitter}
thin line smooth handles


N

\section*{77/4 - nail splitters}

Tapered jaw nail splitters have fine pointed tips for splitting thin nails only. If used as a nail nipper, delicate tips can become damaged.
gS 77.6105 51/2"
gNail Splitter
tapered jaw
smooth handles


Delicate anvil design slides under nail easily.

gSource.
smooth handles
gS 77.4202 4" gS \(77.422241 / 2 "\) gS \(77.548241 / 2^{\prime \prime}\) delicate gS \(77.42705^{\prime \prime}\) narrow gS \(77.42625^{5 \prime \prime}\) heavy gS 77.4402 6"
grooved handles
gS \(77.4200{ }^{4 "}\)
gS \(77.422041 / \mathbf{2 " ~}^{\prime \prime}\)
gS \(77.548041 / 2^{\prime \prime}\) delicate
gS \(77.4260 \quad 5\) " heavy gS \(77.44006 "\)


Nail Nipper
regular jaw

 \(N\)


Nail Nipper
concave, delicate jaw smooth handles

\section*{77/6 - nail nippers}

smooth handles
gS \(77.514641 / \mathbf{2 " ~}^{\prime \prime}\)
gS \(77.51525^{\prime \prime}\)
gS \(77.51826 "\)
grooved handles
gS \(77.5145 \quad 41 / \mathbf{2 " ~}^{\prime \prime}\)
gS \(77.51505^{\prime \prime}\)
gS \(77.51806^{\prime \prime}\)

\section*{Nail Nipper}
concave narrow jaw


51/4"
gS \(77.511041 / \mathbf{2}^{\prime \prime}\) gS 77.5120 51/4"

Nail Nipper
concave, barrel spring stainless, grooved handles


gS \(77.5130 \quad 41 / \mathbf{2 " ~}^{\prime \prime}\) gS \(77.5140 \quad 51 / 4 "\)

Nail Nipper
concave, leaf spring stainless, grooved handles

gSource.

smooth handles
gS \(77.5300 \quad 51 / 2^{\prime \prime}\) concave
grooved handles
gS \(77.5320 \quad 51 / 2 "\) straight
gS \(77.530151 / 2^{\prime \prime}\) concave
gS \(77.532561 / 2^{\prime \prime}\) concave, super size
Nail Nipper
heavy jaw

gS \(77.5400 \quad 51 / 2^{\prime \prime}\)
Nail Nipper
angled concave jaw
knurled handles

gSource.

\section*{77/8 - nail nippers}

DA = Double Action

Useful for Mycotic and Onychauxis nails.
Double action design helps prevent hand fatigue.
gS 77.5440 concave
gS 77.5442 straight
Mycotic Nail Nipper DA
4 3/4"
barrel spring, grooved handles

Useful for Mycotic and Onychauxis nails.
Double action design helps prevent hand fatigue.

concave

gS 77.5460 concave
gS 77.5462 straight
Mycotic Nail Nipper DA
6"
barrel spring, grooved handles


Useful for Mycotic and Onychauxis nails.
Double action design helps prevent hand fatigue.

concave

\section*{gS \(77.5470 \quad 6 "\)}

\section*{Mycotic Nail Nipper DA} concave
leaf spring, knurled handles

Useful for Mycotic and Onychauxis nails.
Double action design helps prevent hand fatigue.


\section*{did you know... ?}

The following replacement springs for gSource nippers and splitters are available from stock.

\section*{Replacement Barrel Springs (each)}
gS 10.1504
gS 10.1505
gS 10.1529


\section*{gS Nail Nipper}
or Splitter
gS 77.3880
gS 77.3890
gS 77.3900
gS 77.3910
gS 77.3920
gS 77.3940
gS 77.4200
gS 77.4202
gS 77.4220
gS 77.4222
gS 77.4260
gS 77.4262
gS 77.4270
gS 77.4400
gS 77.4402
gS 77.4410
gS 77.4420
gS 77.4430
gS 77.4440
gS 77.4480
gS 77.4485
gS 77.5010
gS 77.5020
gS 77.5040
gS 77.5050
gS 77.5055
gS 77.5110
gS 77.5120
gS 77.5130
gS Replacement
Spring Needed
gS 10.1525
gS 10.1528
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1526
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1529
gS 10.1529
gS 10.1525
gS Replacement gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
g 10.1525
gS 10.1528
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1526
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1525
gS 10.1529
gS 10.1525

Please contact gSource Customer Service for availability of replacement springs for gSource nipper and splitter part numbers not listed above.

Replacement Leaf Springs (pair)
gS 10.1502 gS 10.1526
gS 10.1503 gS 10.1527
gS 10.1506 gS 10.1528
gS 10.1525

\section*{gS Nail Nipper \\ or Splitter \\ gS Replacement Spring Needed}
gS 77.5140
gS 77.5145
gS 77.5146
gS 77.5150
gS 77.5152
gS 77.5180
gS 77.5182
gS 77.5300
gS 77.5301
gS 77.5305
gS 77.5320
gS 77.5325
gS 77.5340
gS 77.5400
gS 77.5440
gS 77.5442
gS 77.5460
gS 77.5462
gS 77.5464
gS 77.5470
gS 77.5480
gS 77.5482
gS 77.5600
gS 77.6001
gS 77.6003
gS 77.6005
gS 77.6007
gS 77.6010
gS 77.6105
gS 10.1525
gS 10.1502
gS 10.1525
gS 10.1504
gS 10.1504
gS 10.1505
gS 10.1505
gS 10.1505
gS 10.1527
gS 10.1525
gS 10.1525
gS 10.1503
gS 10.1502
gS 10.1506
gS 10.1502
gS 10.1526
gS 10.1525
gS 10.1525
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Double Trocar & Smooth & & \(\gtrless\) & \(\theta\) & & \\
\hline & diameter & 4" & 5" & \(6 "\) & 9" & 12" \\
\hline & 0.7mm [.028"] & gS 78.2000 & gS 78.2050 & gS 78.1210 & gS 78.2105 & gS 78.2200 \\
\hline & 0.9mm [.035"] & gS 78.2010 & gS 78.2060 & gS 78.1220 & gS 78.2110 & gS 78.2210 \\
\hline & 1.1 mm [.045"] & gS 78.2020 & gS 78.2070 & gS 78.1230 & gS 78.2120 & gS 78.2220 \\
\hline & \[
1.4 \mathrm{~mm} \quad[.054 "]
\] & \[
\text { gS } 78.2040
\] & \[
\text { gS } 78.2080
\] & \[
\text { gS } 78.1240
\] & \[
\text { gS } 78.2140
\] & \[
\text { gS } 78.2240
\] \\
\hline & 1.6 mm [.062"] & gS 78.2030 & gS 78.2090 & gS 78.1250 & gS 78.2130 & gS 78.2230 \\
\hline & \multicolumn{2}{|l|}{Full Thread} & \multicolumn{3}{|l|}{} & \\
\hline & diameter & 4" & 5" & \(6{ }^{\prime \prime}\) & 9" & 12" \\
\hline & 1.6mm [.062"] & gS 78.4210 & gS 78.4220 & gS 78.4230 & gS 78.4030 & gS 78.4035 \\
\hline \multirow[t]{13}{*}{Single Trocar} & \multicolumn{2}{|l|}{Smooth / Round End} & \multicolumn{3}{|l|}{\(\leftrightarrow \sim\)} & \\
\hline & diameter & 4" & 5" & \(6 "\) & 9" & 12" \\
\hline & 0.7mm [.028"] & gS 78.2300 & gS 78.2700 & gS 78.2800 & gS 78.2500 & gS 78.2600 \\
\hline & 0.9mm [.035"] & gS 78.2310 & gS 78.2710 & gS 78.2810 & gS 78.2510 & gS 78.2610 \\
\hline & \[
1.1 \mathrm{~mm} \quad\left[.045^{\prime \prime}\right]
\] & gS 78.2320 & gS 78.2720 & gS 78.2820 & gS 78.2520 & gS 78.2620 \\
\hline & \[
1.4 \mathrm{~mm} \quad[.054 "]
\] & \[
\text { gS } 78.2330
\] & \[
\text { gS } 78.2740
\] & gS 78.2840 & \[
\text { gS } 78.2540
\] & \[
\text { gS } 78.2640
\] \\
\hline & 1.6 mm [.062"] & gS 78.2340 & gS 78.2750 & gS 78.2850 & gS 78.2530 & gS 78.2630 \\
\hline & \multicolumn{2}{|l|}{Partial Thread 25mm / Round End} &  & \(\square\) & & \\
\hline & diameter & 4" & 5" & \(6 "\) & 9" & 12" \\
\hline & 1.6 mm [.062"] & gS 78.9110 & gS 78.9112 & gS 78.9114 & gS 78.9116 & gS 78.9118 \\
\hline & \multicolumn{2}{|l|}{Full Thread / Round End} &  &  & & \\
\hline & diameter & 4" & 5" & \(6{ }^{\prime \prime}\) & \(9 "\) & 12" \\
\hline & 1.6 mm [.062"] & gS 78.4080 & gS 78.4085 & gS 78.4090 & gS 78.4100 & gS 78.4110 \\
\hline \multirow[t]{7}{*}{Double Diamond} & \multicolumn{2}{|l|}{Smooth} & \multicolumn{2}{|l|}{\(\bigcirc \square\)} & & \\
\hline & diameter & 4" & 5" & \(6 "\) & 9" & 12" \\
\hline & 0.7mm [.028"] & gS 78.3000 & gS 78.3050 & gS 78.1300 & gS 78.3100 & gS 78.3200 \\
\hline & \[
0.9 \mathrm{~mm} \quad\left[.035^{\prime \prime}\right]
\] & gS 78.3010 & gS 78.3060 & gS 78.1310 & gS 78.3110 & gS 78.3210 \\
\hline & 1.1 mm [.045"] & gS 78.3020 & gS 78.3070 & gS 78.1320 & gS 78.3120 & \[
\text { gS } 78.3220
\] \\
\hline & \[
1.4 \mathrm{~mm} \quad[.054 "]
\] & \[
\text { gS } 78.3030
\] & \[
\text { gS } 78.3080
\] & \[
\text { gS } 78.1340
\] & \[
\text { gS } 78.3140
\] & \[
\text { gS } 78.3230
\] \\
\hline & \[
1.6 \mathrm{~mm} \quad\left[.062^{\prime \prime}\right]
\] & gS 78.3040 & gS 78.3090 & gS 78.1330 & gS 78.3130 & gS 78.3240 \\
\hline \multirow[t]{7}{*}{Single Diamond} & \multicolumn{2}{|l|}{Smooth / Round End} & \multicolumn{2}{|l|}{\(\square \square\)} & & \\
\hline & diameter & 4" & 5" & \(6 "\) & 9" & 12" \\
\hline & 0.7mm [.028"] & gS 78.3300 & gS 78.3341 & gS 78.3350 & gS 78.3400 & gS 78.3500 \\
\hline & 0.9mm [.035"] & gS 78.3310 & gS 78.3342 & gS 78.3360 & gS 78.3410 & gS 78.3510 \\
\hline & \[
1.1 \mathrm{~mm} \quad\left[.045^{\prime \prime}\right]
\] & gS 78.3320 & gS 78.3344 & gS 78.3370 & gS 78.3420 & \[
\text { gS } 78.3520
\] \\
\hline & 1.4 mm [.054"] & gS 78.3330 & gS 78.3346 & gS 78.3380 & gS 78.3440 & gS 78.3525 \\
\hline & 1.6 mm [.062"] & gS 78.3340 & gS 78.3348 & gS 78.3390 & gS 78.3430 & gS 78.3530 \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Stainless Steel Kirschner Wires \\
6 wires per package non-sterile
\end{tabular}} & \multicolumn{6}{|l|}{An internal fixation device, such as the K-wires, Steinmann Pins and cerclage wires shown in this section, must never be reused. They are intended for single use only.} \\
\hline & Precision ground from
Smooth tapered points
Please inquire about the & certified implan & stainless stee
anined for eas
and and sty & l. & on this page. & \\
\hline
\end{tabular}

\section*{78-79/2 - stainless steel steinmann pins}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Double Trocar}} & \multicolumn{2}{|l|}{Smooth} & Full Thread \\
\hline & & \(\gtrless \sim\) & \(\square 8\) & \(\bigcirc\) \\
\hline & diameter & \(9 "\) & 12 " & \(9 "\) \\
\hline 2.0 mm & [.079"] & gS 78.5500 & gS 78.5720 & gS 78.8500 \\
\hline 2.4 mm & [.094"] & gS 78.5530 & gS 78.5724 & gS 78.8530 \\
\hline 2.8 mm & [.110"] & gS 78.5560 & & gS 78.8560 \\
\hline 3.2 mm & [.126"] & gS 78.5590 & & gS 78.8590 \\
\hline 3.5 mm & [.138"] & gS 78.5620 & & gS 78.8620 \\
\hline 4.0 mm & [.157"] & gS 78.5650 & & gS 78.8650 \\
\hline 4.5 mm & [.177"] & gS 78.5680 & & gS 78.8680 \\
\hline 6.35 mm & [.250"] & gS 78.5698 & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Single Trocar / Round End}} & \multicolumn{2}{|l|}{Smooth} & Threaded \\
\hline & & \(\curvearrowright\) & \[
0
\] & \(\bigcirc\) ¢ \\
\hline diameter & & \(9{ }^{\prime \prime}\) & 12" & \(9{ }^{\prime \prime}\) \\
\hline 2.0 mm & [.079"] & gS 78.6100 & gS 78.5820 & gS 78.8700 \\
\hline 2.4 mm & [.094"] & gS 78.6130 & gS 78.5824 & gS 78.8730 \\
\hline 2.8 mm & [.110"] & gS 78.6160 & & gS 78.8760 \\
\hline 3.2 mm & [.126"] & gS 78.6190 & & gS 78.8780 \\
\hline 3.5 mm & [.138"] & gS 78.6220 & & gS 78.8820 \\
\hline 4.0 mm & [.157"] & gS 78.6250 & & gS 78.8850 \\
\hline 4.5 mm & [.177"] & gS 78.6280 & & gS 78.8880 \\
\hline 6.35 mm & [.250"] & gS 78.6288 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Double Diamond & \multicolumn{3}{|r|}{Smooth} & Full Thread \\
\hline & \multicolumn{2}{|l|}{diameter} & \(9 "\) & 9" \\
\hline & 2.0 mm & [.079"] & gS 78.7000 & gS 78.8300 \\
\hline & 2.4 mm & [.094"] & gS 78.7030 & gS 78.8330 \\
\hline & 2.8 mm & [.110"] & gS 78.7060 & gS 78.8360 \\
\hline & 3.2 mm & [.126"] & gS 78.7090 & gS 78.8390 \\
\hline & 3.5 mm & [.138"] & gS 78.7120 & gS 78.8420 \\
\hline & 4.0 mm & [.157"] & gS 78.7150 & gS 78.8450 \\
\hline & 4.5 mm & [.177"] & gS 78.7180 & gS 78.8480 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Single Diamond / Round End & & Smooth & Threaded \\
\hline \multicolumn{2}{|l|}{diameter} & \(9 "\) & \(9 "\) \\
\hline 2.0 mm & [.079"] & gS 78.7780 & gS 78.8000 \\
\hline 2.4 mm & [.094"] & gS 78.7630 & gS 78.8030 \\
\hline 2.8 mm & [.110"] & gS 78.7660 & gS 78.8060 \\
\hline 3.2 mm & [.126"] & gS 78.7690 & gS 78.8090 \\
\hline 3.5 mm & [.138"] & gS 78.7720 & gS 78.8120 \\
\hline 4.0 mm & [.157"] & gS 78.7750 & gS 78.8150 \\
\hline 4.5 mm & [.177"] & gS 78.7782 & gS 78.8180 \\
\hline
\end{tabular}

Stainless Steel
Steinmann Pins
An internal fixation device, such as the K-wires, Steinmann Pins and cerclage wires shown in this 6 wires per package

Precision ground from certified implant stainless steel.
Smooth tapered points are expertly machined for easier penetration.
Please inquire about the availability of any size and style not shown on this page.
\begin{tabular}{|c|c|c|c|c|}
\hline Double Trocar & \multicolumn{2}{|l|}{Smooth} & \(\curvearrowright\) & 8 \\
\hline & \multicolumn{2}{|l|}{diameter} & 4" & \(6 "\) \\
\hline & 0.6 mm & [.024"] & gS 79.2106 & gS 79.2306 \\
\hline & 1.0 mm & [.039"] & gS 79.2110 & gS 79.2310 \\
\hline & 1.2 mm & [.047"] & gS 79.2112 & gS 79.2312 \\
\hline & 1.5 mm & [.059"] & gS 79.2115 & gS 79.2315 \\
\hline & 1.6 mm & [.062"] & gS 79.2116 & gS 79.2316 \\
\hline & 1.8 mm & [.070"] & gS 79.2118 & gS 79.2318 \\
\hline
\end{tabular}
- Titanium K-wires are lightweight and have a high tensile strength especially useful under repeated load stresses and capable of withstanding strain during internal fixation.
- Titanium is non-magnetic, biocompatible, and corrosion resistant.

An internal fixation device, such as the K-wires, Steinmann Pins and cerclage wires shown in this

\section*{Titanium}

Kirschner Wires
1 wire per package non-sterile section, must never be reused. They are intended for single use only.

Precision ground from certified implant titanium.
Smooth tapered points are expertly machined for easier penetration.
Please inquire about the availability of any size and style not shown on this page.
\begin{tabular}{lll} 
& diameter & gauge \\
gS 79.2002 & 0.2 mm & 36 \\
gS 79.2003 & 0.3 mm & 30 \\
gS 79.2004 & 0.4 mm & 27 \\
gS 79.2005 & 0.5 mm & 25 \\
gS 79.2006 & 0.6 mm & 23 \\
gS 79.2007 & 0.7 mm & 22 \\
gS 79.2008 & 0.8 mm & 21 \\
gS 79.2009 & 0.9 mm & 20 \\
gS 79.2010 & 1.0 mm & 19 \\
gS 79.2012 & 1.2 mm & 18 \\
gS 79.2015 & 1.5 mm & 17
\end{tabular}


Stainless Steel
Cerclage Wires
1 roll per package 10 meters in length non-sterile

An internal fixation device, such as the K-wires, Steinmann Pins and cerclage wires shown in this section, must never be reused. They are intended for single use only.

\title{
78-79/4 - k-wires, steinmann pins, cerclage wires
}

\section*{did you know... ?}

Since their introduction, Kirschner wires (also known as K-wires) have been used extensively throughout the body to help reduce and stabilize fractures, osteotomies, and fusions. They are considered a versatile tool in the hands of orthopedic and plastic surgeons. gSource provides surgeons with a wide selection of K-wires in various styles and sizes, as shown on pages 1 and 3 in this section.

In 1908, Swiss surgeon Fritz Steinmann improved the technique of reducing fractures by directing the realigning force directly onto the bone. Dr. Steinmann initially used a perforating pin with a sharp tip to pierce the skin on both sides as it went in and out to transfix the bone in the transverse axis. Due to the problem of infection when the pin was removed, he suggested two pins be inserted into the bone from both sides only piercing the skin once.

German surgeon Rudolf Klapp introduced the use of a thin, flexible wire for treatment of lower extremity fractures using traction. He burred a hole into the calcaneum and inserted the wire through it. To avoid direct surface-skin-bone contact, the wire was directed towards the plantar surface and penetrated the skin in the area through separate incisions.

When German surgeon Martin Kirschner became aware of these techniques and developments, he contributed to the technique of applying traction directly to the bone and published his first series of cases in 1909. Dr. Kirschner combined the advantages of wire and pin extension techniques. He inserted a thin wire directly into the bone, minimizing the size of the skin wounds and damage to the bone, and designed the wire to be rigid enough in order to avoid transverse wire movement.

Although Dr. Kirschner developed the wire technique, he used it exclusively for traction treatment. The first paper suggesting the use of the Kirschner wires for fracture fixation was published by Otto Loewe in 1932. In the same year, Rene Sommer described percutaneous wires to fix fractures with different patterns (transverse, oblique, complex), as well as dislocations of the acromio-clavicular joint. The ability to facilitate implant removal, avoid excessive dissection, and avoid strangulation of bone as in cerclage wiring were the main advantages of this technique according to Dr. Loewe.

Dr. Kirschner was born in 1870 in Breslau (now Wroclaw, Poland). He attended the universities of Frieburg, Strasbourg (in France), Zurich and Munich, graduating in 1904. He went to Berlin for postgraduate studies under Rudolf von Renvers. Between 1908 and 1910 he was at the university surgical clinic in Greifswald under Erwin Payr, then went to Königsberg to work with Dr. Payr and Paul Leopold Friedrich. Three years later he started work in Leipzig (Germany). He first experienced war surgery during a Red Cross expedition to Sofia and Adrianopel in 1912-1913. Later he worked as a surgeon on the Western Front in the First World War during 1914-1915. He was appointed professor of surgery at Königsberg in 1916. From 1927 to 1934 he was head of the department of surgery in Tübingen (Germany) and in 1934 he was elected President of the German Society of Surgery. He passed away in 1942.

His scientific research and academic interests addressed topics covered by several specialties such as general surgery, orthopedic surgery, neurosurgery, urology, anesthesiology and even plastic surgery. In orthopedics, he remains renowned for skeletal tractions, bone elongations, and invention of thin wire. He described tourniquet application. In 1924, he performed the first successful pulmonary artery embolectomy. His skills contributed significantly to cancer surgery of the stomach, colon and rectum. He was able to mobilize the stomach without vascular compromise in order to use for esophagoplasty (plastic surgery for the repair or reconstruction of the esophagus). He modified the Bassini technique for inguinal hernia repair in order to reduce the recurrence rate. He also modified the technique of craniotomy that was used at the time and contributed to neurosurgery with his proposals for the treatment of cortical epilepsy. His impact on plastic surgery was comparably important as he modified the Langenbeck technique for cleft palate repair. He published several articles on wound healing and infection, and changed the current techniques of anesthesiology in 1931 when he presented a technique of spinal anesthesia which was individually adjustable in dosage and level of anesthesia.
gSource K-Wire and Pin Dispensers on pages 1-2 in Section 98-99 are handy containers for storing and dispensing K-Wires and Steinmann Pins.
gRacks for 4" and 6" K-Wires and 9" K-Wires and Steinmann Pins on pages 5-6 in Section 98-99 are convenient for organization and storage of various diameter sizes.


Alligator teeth on jaws provide a secure grip for nail removal.
gS 81.8510 narrow gS 81.8520 wide

Platypus Nail Pulling Forceps
5 1/2"


For cerclage wire.
gS \(81.3360 \quad 51 / \mathbf{2 " ~}^{\prime \prime}\)
Round Nose Pliers smooth 1 mm tip delicate

gS 81.8530 narrow gS 81.8540 wide

Platypus Nail Pulling Forceps
5 1/2", leaf spring


For cerclage wire.
gS \(81.3370 \quad 51 / 2 "\)
Needle Nose Pliers one round 2 mm tip delicate


\section*{81/2 - pliers}

gSource.



For cerclage wire. max cap 20 gauge [0.9mm]
gS \(81.3315 \quad 6 "\)
Wire Bending Pliers with Cutter notched, serrated jaw


\section*{81/4 - pliers}

\section*{3 functions in 1 versatile instrument.}
1) Shears wires with ease and provides a clean cut without burns or sharp edges.
2) Bends wires quickly and easily.
3) Cross serrated TC (tungsten carbide) inserts ensure a secure grip on wires for pulling.

Features:
- TC in jaws and cutter.
- Grooved handles are ergonomically designed for a comfortable and secure grip.
- Made from German stainless steel.

gS 81.3380 8"
Wire Bending Pliers with Cutter
TC jaw and cutter max cap 2.0mm [.079"]


gS \(81.3450 \quad 51 / \mathbf{2}^{\prime \prime}\)
Needle Nose Pliers serrated jaw 2 mm tip


Flat Nose Pliers serrated jaw 5mm tip

gSource.

\(\begin{array}{ll}\text { gS } 81.3540 & \text { 5" } 3 \mathrm{~mm} \text { tip } \\ \text { gS } 81.3542 & 7 \text { " } 4 \mathrm{~mm} \text { tip }\end{array}\)
Pin Extraction Pliers with excavating tip and screw lock


\section*{81/6 - pliers}

TC = Tungsten Carbide


For cerclage wire. max cap 17 gauge [1.5mm]
gS \(81.3490 \quad 61 / 2^{\prime \prime}\)
Flat Nose Pliers with Cutter
tapers to 3.5 mm at tip


Heavy jaws for pulling wires and pins.
gS \(81.3530 \quad 71 / \mathbf{2}^{\prime \prime}\)
Narrow Nose Pliers tapers to 3.5 mm at tip

gSource.

TC = Tungsten Carbide
PEEK = Polyether Ether Ketone

- Combination pliers and wire cutter.
- Precision serrated jaws produce firm and secure gripping action.
- TC welded jaws cut all sizes of cerclage wire and k-wire up to 1.1 mm [.045"].
- Heavy duty spring for strong return.

gS \(81.3716 \quad 6\) 1/2" square 7 mm jaw
gS \(81.37177^{\prime \prime}\) tapers to 2 mm at tip
gS \(81.37208^{\prime \prime}\) needle nose 2 " long jaw tapers to 2 mm at tip

\section*{Universal Pliers}

TC serrated jaws with spring and cutting edge
1.1 mm [.045"] max cap


\section*{81/8 - pliers/locking pliers}

TC = Tungsten Carbide

Heavy duty pliers for wires, pins, screws, and rods.
gS \(81.706081 / 2^{\prime \prime}\)

\section*{Lineman Pliers}
heavy duty with cutting edge max cap 1.6 mm [.062"]

Double action power combined with TC inserts makes these pliers ideal for heavy use.

TC inserts are harder and longer lasting than regular stainless steel.

Pliers with 2 mm jaws can be used to remove up to 1.6 mm [.062"] k-wires from hard-to-reach areas.

Pliers with 3 mm and 6 mm jaws can be used to grasp all sizes of wires and pins.
gS 81.6720 2mm delicate jaw
gS 81.6730 3mm jaw
gS 81.6733 2mm long jaw
gS 81.67406 mm jaw
Double Action Wire Extraction Pliers
7"
TC inserts



Parallel jaws with one grooved side provides extraordinary gripping power.
gS \(81.7040 \quad 71 / 4{ }^{\prime \prime}\)

\section*{Parallel Pliers}

10mm jaw


Parallel jaws with one grooved side provides extraordinary gripping power.

Side cutting jaws for k-wire up to 1.6 mm [.062"]. Angle makes cutting easier.
gS \(81.7050 \quad 71 / 4\) "


Parallel Pliers with Cutter
max cap 1.6mm [.062"]
10 mm jaw

- Heavy duty locking jaws.
- Crafted from German stainless steel.
- Reinforced side construction reduces play in jaws.
- Size of jaw opening is controlled by adjustment screw.
- Self-locking lever with one-handed release.

gS \(81.70707^{\prime \prime}\) small
gS 81.7080 8" medium
gS \(81.7095 \quad 91 / 2\) " large

\section*{Locking Pliers}


\section*{81/12 - locking pliers}

- Implants are removed more effectively with well-engineered slaphammer attachments.
- Force is applied directly in line with jaws providing more control during implant removal.
- Stable three point contact reduces the possibility of twisting or turning.
- Interchangeable slaphammer can be used with two different pliers.
- German stainless steel.
small pliers
gS 81.7138 7" regular jaw
gS \(81.714481 / 2^{\prime \prime}\) needle nose jaw
medium pliers
gS \(81.7140 \quad 8\) " regular jaw
gS 81.714510 " needle nose jaw
large pliers
gS 81.7142 (1/2" regular jaw
gS \(81.7146 \quad 12\) " needle nose jaw
slaphammers
gS 81.7128 400 gr for small pliers
gS 81.7130 400gr for medium pliers
gS 81.7132 700gr for large pliers

\section*{Locking Pliers with Slaphammers}



\section*{did you know...?}

The Greek roots of the word "orthopaedics" are ortho (straight) and pais (child). Early orthopaedists often used braces or other forms of treatment to help children suffering from spine and limb deformities in an effort to make the child "straight".

The history of Orthopedics as a discipline began in the 18th century, marked by the publication of a monograph by French physician Nicolas Andry, Dean of the Faculty of Medicine of the College de France (Paris, 1741) entitled: "L'Orthopedie, ou l'art de prevenir et de corriger dans les enfans, les difformites du corp". This title translates to: "Orthopaedia: or the Art of Correcting and Preventing Deformities in Children".

Dr. Andry was 83 years old at the time his work was published. He was interested in matters of the bones as he encountered many children with bone and limb deformities. At the time, these were common childhood conditions due to a wide array of public health crises ranging from congenital syphilis to rickets. This inspired him to spend years working to correct and prevent these problems in children because he recognized that the malleable nature of a child's skeletal system offered physicians a unique opportunity for early intervention.

His published work was also the source of one of the most famous and recognizable symbols within medicine, drawn by Dr. Andry's collaborator and illustrator, Antoine Humblot. The picture of a crooked trunk of a tree tied to a stake, allowing it to resume normal growth once again, became a visual metaphor for the treatment of skeletal injuries and deformities. An important basic orthopedic principle is depicted by the drawing of the tree: bone is not an inert material, but a dynamic structure that responds to stimuli.


Bones may become deformed for many reasons. These include congenital (from birth), developmental (from abnormal growth during childhood), and posttraumatic (from healing in a deformed position after a fracture). Bones may be deformed in four ways: angulation (a bend in the bone), rotation or torsion (a twist in the bone), translation or displacement (a shift in the position of the bone after a fracture or osteotomy), or limb length discrepancy (a difference in the length of a bone compared with the other side).

Osteogenesis imperfecta (OI) literally means "imperfectly formed bone". People with osteogenesis imperfecta have a genetic defect that impairs the body's ability to make strong bones. One of the genes that tells the body how to make a specific protein does not function. This protein (type I collagen) is a major component of the connective tissues in bones. Type I collagen is also important in forming ligaments, teeth, and the white outer tissue of the eyeballs (sclera). As a result of the defective gene, not enough type I collagen is produced, or the collagen that is produced is of poor quality. In either case, the result is fragile bones that break easily but can heal at a normal rate. There are several types of osteogenesis imperfecta and they vary in severity and characteristics:

Type I is the most common and mildest form. While the structure of the collagen is normal, there is less collagen than there should be. There is little or no bone deformity, although the bones are fragile and easily broken. Teeth are prone to cavities and cracking. The whites of the eyes may have a blue, purple, or gray tint.

Type II is the most severe form. The collagen does not form properly. Bones may break even while the fetus is in the womb. Many infants with type II do not survive.

Type III also has improperly formed collagen and often severe bone deformities, plus additional complications. The infant is often born with fractures. The whites of the eyes may be white, blue, purple, or gray. People with type III are generally shorter than average and may have spinal deformities, respiratory complications, and brittle teeth.

Type IV is moderately severe, with improperly formed collagen. Bones fracture easily, but the whites of the eyes are normal. Some people with type IV may be shorter than average and may have brittle teeth. Bone deformities are mild to moderate.


Keyless chuck for insertion and removal of steinmann pins.

Cannulation max cap: 6.0mm Chuck max cap: 6.1 mm
gS 82.0020 5" reverse lock Universal Chuck cannulated


Keyless chuck for insertion and removal of steinmann pins.

Cannulation max cap: 5.0mm Chuck max cap: 6.1 mm
gS \(82.0030 \quad 51 / 4 "\)
Universal Chuck cannulated

Chuck for insertion and removal of steinmann pins includes separate chuck key.

Cannulation max cap: 5.0 mm
Chuck max cap: 7.0mm

gS 82.4740 4" chuck with key
gS 82.4741 key only
Steinmann Pin Chuck
cannulated, with key


\section*{82/2 - wire and pin management}

Chuck for insertion and removal of steinmann pins includes separate chuck key.

Cannulation max cap: 4.0 mm
Chuck max cap: 7.0mm

Biocompatible silicone handle helps to prevent slippage and provide a secure grip.
gS 82.4731 black
gS 82.4732 blue
gS 82.4733 red
gS 82.4734 green
gS 82.4735 yellow
gS 82.4736 orange
gS 82.4737 grey


\section*{gSilicone Steinmann Pin Chuck}

4", cannulated, with key
silicone handle, green



Bending aid for pins and wires.

Wire and Pin Bender max cap 3.2mm [.126"]



\section*{82/4 - wire and plate management}

Stabilize and bend k-wire at the same time with one instrument.
- one-handed operation
- bends wire close to the bone

To bend wire:
1. After inserting a \(k\)-wire in the bone, cut the wire leaving a piece of \(1 / 2^{\prime \prime}\) to \(3 / 4^{\prime \prime}\) in length.
2. Insert the piece of k-wire into the angled slot on working end of bender and position bender as close to the bone as possible.
3. Press handle together to bend the k-wire. Wire diameter 1.6 mm [.062"] will bend 90 degrees while smaller diameters will bend slightly less than 90 degrees.
4. For flush bending of 1.1 mm [.045"] and 1.6 mm [.062"] k-wire, the two angled cannulations at the proximal end of each handle are useful.
gS \(82.201671 / \mathbf{2 ' ~}^{\prime \prime}\)
Gratloch Wire Bender
max cap 1.6mm [.062"]




Bends k-wire up to 1.1 mm [.045"] to \(90^{\circ}\) angle.
gS \(82.10145^{\prime \prime}\)
K-Wire and Plate Bender max cap 1.1mm [.045"]


Bends k-wire up to 1.6 mm [.062"] to \(90^{\circ}\) angle.
gS 82.1020 5 1/2"
K-Wire and Plate Bender max cap 1.6mm [.062"]

Mini Plate Bending Iron for \(1.5 \mathrm{~mm} / 2.0 \mathrm{~mm}\) plates

Used in pairs with gS 82.0176.
gS 82.0174 1/2"
Small Plate Bending Iron for \(2.7 \mathrm{~mm} / 3.5 \mathrm{~mm}\) plates

Used in pairs with gS 82.0174.
gS 82.0176 5 1/2"
Small Plate Bending Iron for \(3.5 \mathrm{~mm} / 2.7 \mathrm{~mm}\) plates

gS \(82.018273 / 4 "\)
Plate Bending Iron for \(3.5 \mathrm{~mm} / 4.5 \mathrm{~mm}\) plates
```

for 4.76 mm [.188"] rods gS 82.7710 right gS 82.7712 left
for $6.35 \mathrm{~mm}[.250$ "] rods gS 82.7720 right gS 82.7722 left
In Situ Rod Bender 13" used in pairs

```

gS 82.0970 5"
Mini Plate Bending Pliers for 1.5 mm and 2.0 mm plates
\(\qquad\)

gS \(82.0980 \quad 51 / 2 "\)
Plate Bending Pliers for 2.0 mm plates

gSource.
gS 82.03158 1/2"
Plate Bending Pliers
for 1.6 mm plates
gS 82.0298 1/2"
Plate Bending Pliers
for 2.8 mm plates


gS 82.0303

gS 82.0304

Includes two anvils for narrow and wide plates.
gS 82.0302 10" gS 82.0303 wide anvil only gS 82.0304 narrow anvil only

Plate Bending Pliers
for straight plates
gSource.



Includes anvil.
gS 82.0280 12"
gS 82.0282 anvil only
Plate Bending Press
table top for plates up to 2.5 mm [.098"]

\section*{Rod Bender}
one-handed bender for 3mm [.118"] and 4mm [.156"] rods

- Bends rods up to 7 mm [.276"] to three different angles.
- Separate reduction ring not required.
- Adjustable center cam is spring loaded.

Universal Rod Bender
for rods up to 7 mm [.276"]


- Bends rods up to 6 mm with three different cam settings.
- Separate reduction ring not required.
- Adjustable center cam is spring loaded.

detached

attached
for rods
gS 82.7740 4.0mm [.157"]
gS 82.77454 .76 mm [.187"]
gS 82.7750 5.5mm [.217"]
gS 82.7760 6.35mm [.25"]


Rod Holder
7 1/4"
straight

gS 82.7745
for rods
gS 82.7840
gS 82.7845 gS 82.7850 gS 82.7855 gS \(82.78606 .35 \mathrm{~mm}[.25\) "]


Rod Holder
8 1/2" curved

gS 82.7950

gS 82.7960
for rods
gS \(82.79505 .5 \mathrm{~mm}[.217\) "], with prism
gS \(82.79555 .5 \mathrm{~mm}\left[.217{ }^{\prime \prime}\right]\)
gS \(82.79606 .35 \mathrm{~mm}[.25 "]\)
Rod Holder
10"
straight

for rods
gS \(82.75514 .5 \mathrm{~mm}\left[.177{ }^{\prime \prime}\right]\)
gS 82.75524 .75 mm [.187"]
gS 82.7553 5.0mm [.197"]
gS 82.7555 5.5mm [.217"]
gS 82.7556 6.0mm [.236"]
gS \(82.75576 .35 \mathrm{~mm}[.25 "]\)
gS 82.7558 6.55mm [.258"]
Rod Gripper
8 1/2"
adjustable

gS 82.7555


gS 82.7982 for 5.5 mm [.217"] rods

Rod Holder
11"
straight narrow nose

gS 82.7985
for rods
gS 82.7985 4.75mm [.187"]
gS \(82.79876 .35 \mathrm{~mm}[.25 "]\)
Rod Holder
11"
straight nose
gSource.

gS 82.7991

gS 82.7992

gS 82.7993
for rods
gS 82.79914 .75 mm [.187"]
gS \(82.79925 .5 \mathrm{~mm}\left[.217{ }^{\prime \prime}\right]\)
gS \(82.79936 .35 \mathrm{~mm}[.25 "]\)

\section*{Rod Holder}

11"
angled narrow nose


TC = Tungsten Carbide


For twisting cerclage wire.
gS \(82.42306 "\)
gS 82.4231 71/4" gS 82.4232 8"

Wire Twisting Forceps
TC inserts 4 mm serrated square tip



For twisting cerclage wire.
gS \(82.42356^{\prime \prime}\)
gS \(82.423671 / 4 "\) gS 82.4237 8"

Wire Twisting Forceps
TC inserts
3 mm serrated rounded tip

TC = Tungsten Carbide


For twisting cerclage wire.
gS \(82.4240 \quad 71 / \mathbf{2 " ~}^{\prime \prime}\)
Wire Twisting Forceps TC inserts 6 mm serrated rounded tip


For twisting cerclage wire. gS \(82.42506 "\)

Wire Twisting Forceps 3 mm smooth rounded tip

How to use:
1. Wrap wire around bone and position ends next to each other.
2. Grasp both ends of wire with jaws.
3. Engage the ratchet to enforce solid clamping.
4. Stabilize wiring site.
5. Pull back on center ring repeatedly until wire has reached desired tension.
6. Disengage ratchet.
gS 82.4260 6 1/4" rounded long tip, 3mm
gS \(82.42636^{\prime \prime} \quad\) rounded short tip, 3 mm gS \(82.42646^{6 \prime \prime} \quad\) square short tip, 4 mm

Corwin Wire Twister
TC inserts serrated for cerclage wire

DA = Double Action
TC = Tungsten Carbide


For twisting cerclage wire.
Biocompatible silicone handle helps to prevent slippage and provide a secure grip.
gS \(82.420061 / \mathbf{2}^{\prime \prime}\)
gWire Twister
max cap 17 gauge [1.5mm] silicone handle, green

gS \(82.425561 / \mathbf{2}^{\prime \prime}\)
Wire Twister/Shear Cutter
serrated, with hole max cut 14 gauge [ 2.0 mm ] cerclage wire

gS 82.4270 9"
Wire Cutter and Twister DA 8mm serrated jaw, TC inserts max cap 1.6 mm [.062"]

\section*{Save time. Quickly twist and cut cerclage wire with control and ease.}

The gSource Wire Cutter and Twister is designed to provide exceptional holding, twisting and cutting ability.
- Twists and cuts cerclage wire from 21 gauge [ 0.8 mm ] up to 18 gauge [ 1.2 mm ].
- Uniformly twists cerclage wire.
- Knurled locking nut turns to unlock and release the handle so wire can be cut before twisting.
- Serrated 8 mm jaws are designed to tightly hold wire when closed and in locked position.
- Knurled twisting knob on end helps to provide a secure grip as repeated pulling action is required until wire has reached desired tension.
- Grooved handles provide a secure grip when cutting or clamping.

gS 82.4275 10"
Wire Cutter and Twister
8mm serrated jaw max cap 18 gauge [ 1.2 mm ] cerclage wire

How to use:
1. Wrap wire around bone using a gSource wire guide or passer and position wire ends next to each other.
2. Disengage knurled locking nut and grasp both ends of wire with jaw.
3. Engage locking nut for hands free clamping.
4. Stabilize the wiring site.
5. Pull back on knurled twisting knob (repeatedly) until wire has reached desired tension.
6. Disengage locking nut to release wire.
7. Cut off wire ends.
shown in open position (unlocked)
locking nut \(\qquad\)
twisting knob

Twist cerclage wire quickly, smoothly and evenly.
1. Wrap wire around bone and bring wire ends together.
2. Place wire ends in jaw.

3. Engage ratchet and clamp wire firmly.
4. Stabilize site.
5. Pull back on t-handle until desired tension is reached.
6. Release jaw by disengaging ratchet.
gS 82.4790 11"


Jet Wire Twister
10 mm serrated jaw max cap 17 gauge [ 1.5 mm ] cerclage wire

How to use:
1. Loosen both knobs by turning counterclockwise until center pin disappears from view.
2. Pass wire around bone and feed both ends into center hole at the tip.
3. Use Wire Pulling Forceps to pull ends through and hold wire tight while pushing the instrument close to the bone.
4. Turn lower (distal) knob clockwise to lock wire in place. Then turn upper (proximal) knob clockwise to pull the remaining slack from the wire.
5. Balance instrument in one hand and rotate it with the other hand until resistance is felt. Then hold tightener shaft tight and turn lower (distal) knob clockwise until wire is cut.

Note: Hold instrument straight (do not tilt) while tightening.
gS \(82.4750 \quad 8\) 1/2"

\section*{Loute Wire Tightener}
max cap 17 gauge [ 1.5 mm ] cerclage wire

gS \(82.49307 "\)
gS 82.4940 9"

\section*{Suture Passer}
curved with crochet hook phenolic handle

\section*{82/22 - wire and suture management}


Demel Wire Guide
max cap 17 gauge [ 1.5 mm ] cerclage wire

gS 82.4870

gS 82.4890
gS \(82.487081 / 2^{\prime \prime} 45 \mathrm{~mm}\) gS 82.4890 9 1/2" 70 mm

Wire Passer
max cap 11 gauge [ 3.0 mm ] cerclage wire phenolic handle


1-2. Serrated end of drill guide helps with fixation of drill hole positioning and provides soft tissue protection during drilling.
3. Drill guide also helps to guide cerclage wire through the hole and into the fenestrated loop on the other side.
4. After wire passes through fenestrated loop, forceps are opened and wire can be easily pulled up from other side.
gS \(82.49706 "\)
gWire Passer and Retriever Forceps
with drill guide for max OD 3.0 mm drill bit max cap 17 gauge [ 1.5 mm ] cerclage wire
length x width
gS 82.4278
5 cm max 2.4 mm [.094"] wire, 5 "
gS \(82.428016 \times 9 \mathrm{~cm}\) max 3.2mm [.126"] wire, 7 "
gS 82.4281 \(21 \times 15 \mathrm{~cm}\) max 4.0 mm [.157"] wire, 9"
gS 82.4282 replacement screws
Boehler Wire and Pin Tractor

\section*{did you know... ?}

There are many types of fractures, but the main categories are:
- Complete: the bone snaps into two or more parts.
- Incomplete: the bone cracks but does not break all the way through.
- Compound: also called an open fracture, the bone breaks through the skin. It may then recede back into the wound, so it is no longer visible through the skin.
- Simple: also called a closed fracture, the bone breaks but there is no open wound in the skin.

Simple fractures include:
- Greenstick: an incomplete fracture in which the bone is bent. This type of fracture occurs most often in children.
- Transverse: a fracture at a right angle to the bone's axis.
- Oblique: a fracture in which the break is at an angle to the bone's axis.
- Comminuted: a fracture in which the bone fragments into several pieces.
- Impacted: a fracture whose ends are driven into each other. This commonly occurs with arm fractures in children and is sometimes known as a buckle fracture.

gSource cerclage wire, as shown in Section 78-79, is stainless steel in the form of a very flexible wire in the shape of a ring or loop, for the purpose of stabilizing fragments in a fractured bone, especially useful for transverse irregular or short oblique fractures. Many of the wire management instruments shown in this section, such as wire tighteners and twisters, were designed to be used with cerclage wire.

Cerclage is an orthopedic procedure in which the ends of an oblique bone fracture or the chips of a broken patella (the small bone in front of the knee) are bound together with a wire loop or a metal band to hold them in position until healed. In a comminuted fracture of the patella, the fragments tend to be pulled apart by the normal knee forces unless held together by one or more cerclage wires. The ruptured patellar tendon may also require cerclage wires to pull it back into the patella.

When a bone is shattered, the pieces are often impossible to plate and cerclage wires may be useful in uniting the fragments again. Cerclage wires may also be used in an osteotomy, a surgical procedure to realign or remove a segment of bone. Most often, an osteotomy is performed to realign a deformed bone. The bone is cut with surgical instruments, realigned, and allowed to heal in its new position.

TC = Tungsten Carbide

smooth blades
gS 83.2680 4" str
gS 83.2945 4 3/4" str
gS 83.29204 " cvd
one serrated blade
gS 83.2700 4" str
gS 83.2950 4 3/4" str
gS \(83.29404 "\) cvd


Wire Cutting Scissors
(crown and collar)
for cerclage wire, max cap 21 gauge [ 0.8 mm ]

TC = Tungsten Carbide


gS 83.7222 \(6 "\)
Wire Side Cutter
TC inserts max cap 1.0mm [.040"]


gSource.

DA = Double Action
TC = Tungsten Carbide


gS 83.7228 6 1/2"
Wire Side Cutter DA Angled TC inserts max cap 1.6 mm [.062"]

ஜ

DA = Double Action
TC = Tungsten Carbide

gS \(83.72327^{7 \prime}\) heavy
Wire Side Cutter DA Angled TC inserts max cap 1.6mm [.062"]


End and side cutting jaws.
gS \(83.7260{ }^{7 \prime}\)

Wire End and Side Cutter DA
TC inserts max cap 1.6 mm [.062"]


End and side cutting jaws modified to cut closer to the bone than regular cutters.
gS \(83.73107^{\prime \prime}\)

Wire End and Side Flush Cutter DA
TC inserts max 1.6 mm [.062"]

gSource.

DA = Double Action
TC = Tungsten Carbide

\section*{Designed with safety and ease in mind.}

The gSource Flush End and Side Wire Cutter with tungsten carbide and silicone inserts can help prevent a cut piece of wire from being projected into the air or falling into the wound site.
- Silicone inserts are designed to hold the remnant piece of wire for safe disposal after cutting.
- Improved design of tungsten carbide (TC) jaws cuts wire flush to the bone.
- Maximum leverage is achieved with the combined double action and leaf spring design. Provides a smooth and easy cutting action.
- End and side cutting jaws.
- Grooved handles provide a secure grip.
- Silicone inserts are suitable for use in manufacturing of medical devices. They are autoclavable and replaceable.
gS \(83.8450{ }^{7 "}\)
gS 83.8451 replacement silicone inserts (pair)
Wire End and Side Flush Cutter with Silicone Inserts DA
TC inserts
max cap 1.6 mm [.062"]

- Silicone inserts are designed to hold the remnant piece of wire for safe disposal after cutting.
- Double action provides smooth cutting action.
- End and side cutting jaws.
- Grooved handles provide a secure grip.
- Silicone inserts are suitable for use in manufacturing of medical devices. They are autoclavable and replaceable.
gS \(83.8400{ }^{7 \prime \prime}\)
gS 83.8401 replacement silicone inserts (pair)
Wire End and Side Cutter with Silicone Inserts DA max cap 1.6 mm [.062"]

\section*{83/6-pin and wire cutters}

DA = Double Action
TC = Tungsten Carbide



Stepped TC insert design holds the remnant piece of wire for safe disposal and shearing.

Designed with safety and ease in mind.
gS \(83.751381 / \mathbf{2 ' ~}^{\prime \prime}\)
Wire End Cutter and Holder DA
TC inserts
max cap 1.6 mm [.062"]


DA = Double Action
TC = Tungsten Carbide

gS \(83.7514 \quad 81 / 2^{\prime \prime}\)
Pin End Cutter DA
TC inserts max cap 2.8mm [.110"]

\section*{83/8 - pin and wire cutters}

DA = Double Action
TC = Tungsten Carbide
- Strong, lightweight design requires less strength than regular double action cutters.
- Titanium Nitride (TiN) coated TC inserts are harder and last longer than uncoated TC.
- Angled cutting edge.
- Silicone inserts hold remnant wire securely, helps prevent flying pieces.

gS 83.7900 9"
gS 83.7901 TC insert replacement kit includes: inserts (2), screws (4) and wrench (1)
gS 83.7902 silicone insert replacement kit includes: inserts (2), screws (2) and screwdriver (1)

Hercules Pin Side Cutter with Silicone Inserts DA Angled
TiN coated TC inserts
max cap 3.0mm [.118"]



Silicone inserts are designed to hold the remmant piece of wire for safe disposal after cutting.
gS 83.8882 9"
gPin Side Cutter DA Angled
TC and silicone inserts max cap 2.8mm [.110"]

DA = Double Action


For mini plates.
gS 83.8800 9"
Plate Side Cutter
max cap 1.0mm [.040"]


Double action delivers power to the cutter.

Side cutting jaws for mini plates.
gS 83.8900 9"
Plate Side Cutter DA
max cap 1.0mm [.040"]
gSource.

\section*{83/10 - pin cutters and pin shears}

\section*{DA = Double Action}


Double action delivers power to this versatile cutter.

Side cutting jaws for pins.
gS 83.9000 1/2"
Pin Side Cutter DA
max cap 3.2mm [.126"]


Shear 3 different pin diameters with 1 instrument.
- Shears 2.5mm [.098"] 3.0mm [.118"] and 3.5 mm [.138"] diameter pins with ease and provides a clean cut without burrs or sharp edges.
- Grooved handles are ergonomically designed for a comfortable and secure grip.
- Double action design allows for ease in cutting.

gS 83.913511 1/2"
Pin Shears DA
for 2.5 mm [.098"], 3.0 mm [.118"], 3.5 mm [.138"] pins


\section*{DA = Double Action}

gS 83.7320 10"
Pin End Cutter DA
max cap 3.0mm [.118"]

Large heavy duty cutter with specially hardened jaws for cutting titanium and stainless steel rods.
gS \(83.9200{ }^{15}{ }^{\prime \prime}\)
Pin Side Cutter DA
max cap 4.0mm [.157"]

\(\oplus\)


- Cuts rods up to 6.35 mm [.250"].
- Specially hardened jaws.
- Grooved handles for non-slip grip.
- Handle stop prevents jaw overload.
- Not to be used inside patient.
- Weight: 3.6 lbs.
gS 83.7261 21" \(^{\prime \prime}\)
gS 83.7262 replacement jaws

\section*{Large Pin Side Cutter DA}
max cap 6.35 mm [.25"]

\section*{83/14 - pin cutters}

DA = Double Action

with detachable handles max cap 6.35 mm [.25"]


The gSilicone Rod Shears easily shears 4.5 mm [.177"], \(5.5 \mathrm{~mm}[.217\) "] and 6.35 mm [.250"] diameter pins and rods.
- Rods are sheared, leaving a smooth and clean surface rather than a sharp, jagged, burr-like surface common when using a standard pinching-type rod cutter.
- Available with and without detachable handles.
- Double action design allows for ease in cutting.
- Note: Instrument is not designed to be used inside the patient's body.
gS 83.7280 without detachable handles
gS 83.7290 with detachable handles
gSilicone Rod Shears
22" with silicone handles, black
for 4.5 mm [.177"], \(5.5 \mathrm{~mm}\left[.217\right.\) "] and \(6.35 \mathrm{~mm}\left[.25^{\prime \prime}\right]\) rods


Recognized for Excellence in surgical performance, efficiency, and safety by the readership of Surgical Products.


\section*{83/16 - rod shears and cable cutter}
- Provides sturdy and accurate shearing of rods.
- Rods are sheared, leaving a smooth and clean surface rather than a sharp, jagged, burr-like surface common when using a standard pinching-type rod cutter.
- Locking, collapsible handle extends to provide increased leverage for cutting.
- Collapsible handle allows for smaller footprint when stored.

- Rod diameter holes are clearly marked.

gS \(83.9905{ }^{16 "}\)
Handle extended during cutting action.
27"
Table Top Rod Shears
for 5.0 mm [.197"] and 6.35 mm [.25"] rods
- Cuts cables cleanly and completely.
- Angled tungsten carbide jaws cut all cable strands with one clean cut.
- Handle design provides comfort and control.
- Small jaw allows surgeon to get close to the bone.
- Ball spring provides a smooth and strong return.
gS \(83.9950{ }^{7 \prime}\)
Cable Cutter
max cap 2.0mm [.079"] cable

- Grinds bone of various densities
- 3 cutting drums for variable density bone graft
- Attaches securely with table clamp
- Fully autoclavable and easy to dismantle for cleaning
- When push block is removed, top opening on gS 84.1000 is \(25 / 8^{\prime \prime} \times 13 / 16^{\prime \prime}\)
gS 84.1000 body only with handle, push block and lock nut for cutting drum, 6 1/2"
gS 84.1020 table clamp
gS 84.1021 safety screw, M4x11, knurled
gS 84.1022 hex screw, M4x5, 2.0 mm
gS 84.1032 cutting drum with 3.0 mm holes
gS 84.1042 cutting drum with 4.0 mm holes
gS 84.1052 cutting drum with 5.0 mm holes

\section*{Bone Mill}


To remove cutting drum:
A) Small knob turns counter-clockwise.
B) Lock nut turns clockwise.


Bone Mill


Bone Mill, Hand-held titanium alloy milling teeth

gSource.

\section*{did you know...?}

Bone grafting is a surgical procedure that replaces missing bone in order to repair bone fractures that are extremely complex, pose a significant health risk to the patient, or fail to heal properly.

Bone grafting is possible because bone tissue, unlike most other tissues, has the ability to regenerate completely if provided the space into which to grow. As native bone grows, it will generally replace the graft material completely, resulting in a fully integrated region of new bone. The biological mechanisms that provide a rationale for bone grafting are osteoconduction, osteoinduction and osteogenesis.

Osteoconduction occurs when the bone graft material serves as a scaffold, or temporary structure, for new bone growth that is perpetuated by the native bone. Osteoblasts from the margin of the defect that is being grafted, utilize the bone graft material as a framework upon which to spread and generate new bone. Osteoblasts are cells that secrete the matrix for bone formation. In the process of bone formation, osteoblasts function in groups of connected cells and produce a calcium and phosphate-based mineral, hydroxylapatite, that is deposited into the organic matrix forming a strong and dense mineralized tissue.

Osteoinduction involves the stimulation of osteoprogenitor cells to differentiate into osteoblasts that then begin new bone formation. The most widely studied type of osteoinductive cell mediators are bone morphogenetic proteins (BMPs). A bone graft material that is osteoconductive and osteoinductive will not only serve as a scaffold for currently existing osteoblasts but will also trigger the formation of new osteoblasts, theoretically promoting faster integration of the graft.

Osteogenesis occurs when osteoblasts originating from the bone graft material contribute to new bone growth along with bone growth generated via the other two mechanisms.

Autologous (or autogenous) bone grafting involves utilizing bone obtained from the same individual receiving the graft. Bone can be harvested from non-essential bones, such as from the iliac crest, or more commonly in oral and maxillofacial surgery, from the mandibular symphysis (chin area) or anterior mandibular ramus (the coronoid process).

Allograft bone, like autogenous bone, is derived from humans. The difference is that allograft is harvested from an individual other than the one receiving the graft. Allograft bone can be taken from cadavers who have donated their bone in order that it be used for living people who are in need of it. It is typically sourced from a bone bank. Bone banks also supply allograft bone sourced from living human bone donors (usually hospital inpatients) who are undergoing elective total hip arthroplasty. There are three types of bone allograft: fresh or fresh-frozen bone, freeze-dried bone allograft (FDBA), and demineralized freeze-dried bone allograft (DFDBA).
gS 86.2545 \(41 / 2^{\prime \prime}\) for 3.2 mm drill bit gS \(86.2550 \quad 51 / 2^{\prime \prime}\) with protective sleeve for 4.5 mm tap

Tap Sleeve
serrated end

gS 86.2558 \(41 / 2^{\prime \prime} 40 \mathrm{~mm}\) guide for 3.2 mm drill bit for round hole and semi-tubular plates
gS 86.2560 \(\quad 5^{\prime \prime} \quad 60 \mathrm{~mm}\) guide for 3.2 mm drill bit for round hole plates

\section*{86-87/2 - instruments for fracture management}

Used with drills and taps to place accurate holes and protect tissue. Serrated ends of both sleeves allow precise placement and help prevent slipping off bone.
\begin{tabular}{lll} 
& & Tap for \\
DS 86.2500 & Drill Bits & 1.1 mm and 1.5 mm \\
Cortical Screws \\
gS 86.2502 & 1.5 mm and 2.0 mm & 2.0 mm \\
gS 86.2503 & 2.0 mm and 2.7 mm & 2.7 mm
\end{tabular}

\section*{Double Drill Sleeve}

\(g S 86.2500\)
\(43 / 4^{\prime \prime}\)

gS 86.2502
\(43 / 4^{\prime \prime}\)

\begin{tabular}{llll} 
& & \begin{tabular}{l} 
Tap for \\
Cortical Screws
\end{tabular} & \begin{tabular}{l} 
Tap for \\
Cancellous Screws
\end{tabular} \\
gS 86.2504 & Drill Bits & 2.5 mm and 3.5 mm & 3.5 mm \\
gS 86.2505 & 3.2 mm and 4.5 mm & 4.5 mm & 4.0 mm \\
gS 86.2506 & 3.2 mm & 6.5 mm & 4.5 mm (malleolar) \\
& & & 6.5 mm
\end{tabular}

Double Drill Sleeve

gS 86.2505
7"

\section*{instruments for fracture management -86-87/3}
```

Drill guides are color coded
green = neutral
gold = load
gS $86.2580 \quad 1.5 \mathrm{~mm} \quad 2.0 \mathrm{~mm}$ cortical gS $86.2582 \quad 2.0 \mathrm{~mm} \quad 2.7 \mathrm{~mm}$ cortical gS $86.2584 \quad 2.5 \mathrm{~mm} \quad 3.5 \mathrm{~mm}$ cortical gS $86.2586 \quad 3.2 \mathrm{~mm} \quad 4.5 \mathrm{~mm}$ cortical/malleolar

```

\section*{Double Drill Guide}
with neutral and load end


\section*{86-87/4 - instruments for fracture management}

With 3 holes and 1 hole for parallel drill bit and K-Wire placement.
gS \(86.250741 / \mathbf{2 " ~}^{\prime \prime}\)
Parallel Drill Guide and Sleeve
for 2.0 mm drill bit and 2.7 mm cortical screws


\section*{Drill Bit}
gS 86.2675 3.3/3.3mm gS 86.2685 3.8/3.8mm

Double Drill Guide 7 1/2"


\title{
instruments for fracture management - 86-87/5
}

FL = Flute Length
OAL = Overall :Length
OD = Outside Diameter SQC = Small Quick Coupling
TiN = Titanium Nitride
\begin{tabular}{|c|c|c|c|c|c|}
\hline & OD & OAL & FL & & \\
\hline gS 86.8211 & \(1.1 \mathrm{~mm} *\) & 60mm & 13 mm & & *Fits in gS 98.8178 gRack, SQC Twist \\
\hline gS 86.8215 & 1.5 mm * & 85 mm & 18 mm & & Drill - see page 98-99/7. \\
\hline gS 86.8216 & 1.5 mm & 110mm & 18 mm & & \\
\hline gS 86.8220 & 2.0 mm * & 100 mm & 22 mm & & \\
\hline gS 86.8221 & 2.0 mm & 125 mm & 22 mm & & \\
\hline gS 86.8222 & 2.2mm* & 110 mm & 32 mm & & \\
\hline gS 86.8224 & 2.5 mm & 110 mm & 30 mm & TiN coated & \\
\hline gS 86.8226 & 2.5 mm * & 110 mm & 32 mm & & \\
\hline gS 86.8225 & 2.5 mm & 180 mm & 32 mm & & \\
\hline gS 86.8227 & 2.7 mm & 100 mm & 29 mm & & \\
\hline gS 86.8228 & \(2.7 \mathrm{~mm} *\) & 125 mm & 29 mm & & \\
\hline gS 86.8232 & 3.2 mm & 145 mm & 48 mm & & \\
\hline gS 86.8233 & 3.2 mm & 195mm & 50 mm & & - Drill bits with quick coupling ends \\
\hline gS 86.8235 & 3.5 mm * & 110 mm & 42 mm & & \\
\hline gS 86.8236 & 3.5 mm & 195mm & 50 mm & & - Designed to fit quick coupling \\
\hline gS 86.8240 & 4.0 mm & 195 mm & 40 mm & & handles gS 86.0040, gS 86.0045, \\
\hline gS 86.8245 & 4.5 mm & 145 mm & 50 mm & & gS 86.0050 and power adaptor \\
\hline gS 86.8246 & 4.5 mm & 195mm & 50 mm & & gS 86.1002 \\
\hline
\end{tabular}

\section*{SQC Drill Bits}
- Drill bits with quick coupling ends
- Designed to fit quick coupling handles gS 86.0040, gS 86.0045 gS 86.0050 and power adaptor gS 86.1002
- gS 86.8725 and gS 86.8732 have calibration lines.
- gS 86.8765 does not have calibration lines.
\begin{tabular}{llll} 
& OD & OAL & FL \\
gS 86.8725 & 2.5 mm & 230 mm & 30 mm \\
gS 86.8732 & 3.2 mm & 230 mm & 30 mm \\
gS 86.8765 & 4.5 mm & 195 mm & 45 mm
\end{tabular}

\section*{SQC Drill Bits}
```

FL = Flute Length
ID = Inside Diameter
OAL = Overall Length
OD = Outside Diameter
SQC = Small Quick Coupling
8
gS 86.8945
4 flutes

```
\begin{tabular}{llllll} 
& OAL & FL & OD & Max ID & \# Flutes \\
gS 86.8827 & \(6^{\prime \prime}\) & 20 mm & 2.0 mm & 1.00 mm & 3 \\
gS 86.8832 & \(61 / 2^{\prime \prime}\) & 40 mm & 3.2 mm & 1.75 mm & 4 \\
gS 86.8835 & \(6^{\prime \prime}\) & 35 mm & 3.5 mm & 1.30 mm & 4 \\
gS 86.8845 & \(61 / 2^{\prime \prime}\) & 45 mm & 4.5 mm & 1.75 mm & 4 \\
gS 86.8945 & \(9^{\prime \prime}\) & 40 mm & 4.5 mm & 2.05 mm & 4
\end{tabular}

\section*{SQC Drill Bits}
cannulated

*Fits in gS 98.8127 Twist
Drill Rack - see page 98-99/8.
\begin{tabular}{|c|c|c|c|}
\hline & OD & OAL & FL \\
\hline gS 86.8410 & 1.0 mm & 55 mm & 26 mm \\
\hline gS 86.8412 & 1.0 mm & 127 mm & 20 mm \\
\hline gS 86.8415 & \(1.5 \mathrm{~mm} *\) & 127 mm & 17 mm \\
\hline gS 86.8420 & \(2.0 \mathrm{~mm} *\) & 127 mm & 23 mm \\
\hline gS 86.8424 & 2.4 mm & 127 mm & 22 mm \\
\hline gS 86.8425 & 2.5 mm * & 127 mm & 22 mm \\
\hline gS 86.8427 & \(2.7 \mathrm{~mm} *\) & 127 mm & 30 mm \\
\hline gS 86.8432 & 3.2 mm * & 127 mm & 42 mm \\
\hline gS 86.8435 & 3.5 mm * & 127 mm & 42 mm \\
\hline gS 86.8440 & 4.0 mm * & 127 mm & 45 mm \\
\hline gS 86.8445 & 4.5 mm * & 127 mm & 34 mm \\
\hline gS 86.8448 & \(4.7 \mathrm{~mm} *\) & 127 mm & 34 mm \\
\hline gS 86.8450 & \(5.0 \mathrm{~mm} *\) & 127 mm & 42 mm \\
\hline gS 86.8460 & 6.0 mm & 127 mm & 37 mm \\
\hline gS 86.8532 & 3.2 mm & 180 mm & 70 mm \\
\hline gS 86.8535 & 3.5 mm & 180 mm & 70 mm \\
\hline gS 86.8545 & 4.5 mm & 180 mm & 70 mm \\
\hline gS 86.8560 & 6.0 mm & 180 mm & 70 mm \\
\hline Twist Drill round end for power dr & & & \\
\hline
\end{tabular}

Source.

\section*{instruments for fracture management - 86-87/7}

MQC = Mini Quick Coupling
QC = Quick Connect
SQC = Small Quick Coupling
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\square \bigcirc\) & \(\square \square\) & ك & \\
\hline \[
\begin{array}{ll}
1.5 & 2.5 \\
\mathrm{~mm} & \mathrm{~mm}
\end{array}
\] & \[
\begin{array}{cc}
3.0 & 3.5 \\
\mathrm{~mm} & \mathrm{~mm}
\end{array}
\] & \[
\begin{array}{ll}
4.0 & 4.5 \\
\mathrm{~mm} & \mathrm{~mm}
\end{array}
\] & cruciform & \\
\hline & Length & Style & \begin{tabular}{l}
QC \\
style
\end{tabular} & Holding Sleeve \\
\hline gS 86.1502 & \(2{ }^{\prime \prime}\) & 1.5mm Hex & MQC & gS 86.4371 \\
\hline gS 86.1504 & \(21 / 2{ }^{\prime \prime}\) & cruciform & MQC & gS 86.4371 \\
\hline gS 86.1915 & 3 1/2" & \(1.5 \mathrm{~mm} \mathrm{Hex*}\) & SQC & none \\
\hline gS 86.1505 & 4" & 1.5 mm Hex & SQC & gS 86.4373 \\
\hline gS 86.1925 & \(31 / 2\) & \(2.5 \mathrm{~mm} \mathrm{Hex*}\) & SQC & none \\
\hline gS 86.1506 & 4" & 2.5 mm Hex & SQC & gS 86.4373 \\
\hline gS 86.1510 & 51/2" & 2.5 mm Hex & SQC & gS 86.4375 \\
\hline gS 86.1515 & \(61 / 2 "\) & 2.5 mm Hex & SQC & gS 86.4375 \\
\hline gS 86.1930 & \(31 / 2{ }^{\prime \prime}\) & 3.0 mm Hex & SQC & none \\
\hline gS 86.1935 & \(31 / 2{ }^{\prime \prime}\) & 3.5 mm Hex* & SQC & gS 86.4373 \\
\hline gS 86.1519 & \(4 "\) & 3.5 mm Hex & SQC & none \\
\hline gS 86.1521 & \(61 / 2 "\) & 3.5 mm Hex & SQC & gS 86.4380 \\
\hline gS 86.1940 & \(31 / 2{ }^{\prime \prime}\) & \(4.0 \mathrm{~mm} \mathrm{Hex*}\) & SQC & none \\
\hline gS 86.1945 & 3 1/2" & 4.5 mm Hex & SQC & none \\
\hline
\end{tabular}

Screwdriver Bits
holding sleeve not included
*Fits gS 98.4050 gRack, Screwdriver Bits SQC - see page 98-99/7.

gS 86.1504 gS 86.1505 gS 86.1935 gS 86.1510 gS 86.1519 gS 86.1521 gS 86.1506
- Design helps provide a uniform distribution of torque force which can lessen the chance of high stress to the working end of the bit and the screw head.
- Star shape profile has less of a surface-to-surface gap between the bit and the screw in comparison with hex profile. This results in a better force closure.
- No holding sleeve required.
\begin{tabular}{|c|c|}
\hline & Size \\
\hline gS 86.1604 & T4* \\
\hline gS 86.1605 & T5 \\
\hline gS 86.1606 & T6 \\
\hline gS 86.1607 & T7 \\
\hline gS 86.1608 & T8* \\
\hline gS 86.1609 & T9 \\
\hline gS 86.1610 & T10 \\
\hline gS 86.1715 & T15* \\
\hline gS 86.1720 & T20 \\
\hline gS 86.1725 & T25* \\
\hline
\end{tabular}

Star Screwdriver Bits
3 1/2"
SQC
*Fits gS 98.4050 gRack, Screwdriver Bits SQC - see page 98-99/7.

\section*{86-87/8 - instruments for fracture management}

MQC = Mini Quick Coupling
OAL = Overall Length
OD = Outside Diameter
QC = Quick Connect
SQC = Small Quick Coupling
TiN = Titanium Nitride

\begin{tabular}{ll} 
gS 86.1200 & \(2 "\) \\
gS 86.1201 & \(2 "\) \\
gS 86.1202 & \(21 / 4^{\prime \prime}\) \\
gS 86.1203 & \(21 / 4^{\prime \prime}\) \\
gS 86.1204 & \(4 "\) \\
gS 86.1206 & \(41 / 4^{\prime \prime}\) \\
gS 86.1208 & \(41 / 4^{\prime \prime}\) \\
gS 86.1212 & \(5 "\) \\
gS 86.1209 & \(7 "\) \\
gS 86.1216 & \(7 "\) \\
gS 86.1220 & \(8^{\prime \prime}\)
\end{tabular}

Taps


ID = Inside Diameter
MQC = Mini Quick Coupling
OAL = Overall Length
QC = Quick Connect
SQC = Small Quick Coupling
\(\left.\begin{array}{lll}\text { gS 86.0035 } & 41 / 4 \text { "AL } & \text { QC Style } \\
\text { MQC }\end{array}\right]\)\begin{tabular}{lll} 
gS 86.0040 & \(41 / 2^{\prime \prime *}\) & SQC, plastic handle, black \\
gS 86.0050 & \(41 / 2^{\prime * *}\) & \begin{tabular}{l} 
SQC, plastic handle, black \\
cannulated, max ID 2.4 mm
\end{tabular} \\
gS 86.0045 & \(31 / 2^{\prime \prime}\) & SQC T-Handle
\end{tabular}

Quick Coupling Handles
*Fits gS 98.4050 gRack, Screwdriver Bits SQC - see page 98-99/7.
 gS 86.0050

gS 86.0045


\begin{tabular}{|c|c|c|c|}
\hline & OAL & Hex & Holding Sleeve \\
\hline gS 86.4520 & 10" & 3.5 mm & none \\
\hline gS 86.4590 & 10" & 3.5 mm & gS 86.4380 \\
\hline gS 86.4595 & \(12 "\) & 3.5 mm & gS 86.4380 \\
\hline gS 86.4530 & 10" & 4.0 mm & gS 86.4380 \\
\hline
\end{tabular}

Hexagonal Screwdrivers

ID = Inside Diameter
OAL = Overall Length

\(2.5 \mathrm{~mm} \quad 3.5 \mathrm{~mm}\)
\begin{tabular}{lllll} 
& & & Max & \begin{tabular}{l} 
Holding
\end{tabular} \\
& OAL & Hex & ID & Sleeve \\
gS 86.4410 & \(73 / 4^{\prime \prime}\) & 2.5 mm & 1.35 mm & gS 86.4375, gS 86.4373 \\
gS 86.4495 & \(83 / 4^{\prime \prime}\) & 3.5 mm & 1.75 mm & none
\end{tabular}

Hexagonal Screwdrivers
cannulated, with notch
phenolic handle
gS \(86.9914 \quad 10 "\)
gSilicone Cardan Joint Hexagonal Screwdriver
3.5 mm hex
silicone handle, green

ID = Inside Diameter
 delicate with probe sleeve 4 3/4"
\begin{tabular}{|c|c|c|c|}
\hline & Measures up to & Minimum ID of drill hole* & Cap type \\
\hline gS 86.2330 & 30 mm & 1.10 mm & screw on \\
\hline gS 86.2405 & 30 mm & 1.50 mm & snap on \\
\hline gS 86.2410 & 50 mm & 2.20 mm & snap on \\
\hline gS 86.2413 & 60 mm & 2.10 mm & screw on \\
\hline gS 86.2415 & 100 mm & 3.20 mm & snap on \\
\hline gS 86.2430 & 100 mm & 3.30 mm & screw on \\
\hline gS 86.2417 & 110 mm & 2.20 mm & screw on \\
\hline gS 86.2418 & 110 mm & 3.30 mm & screw on \\
\hline gS 86.2420 & 120 mm & 2.50 mm & snap on \\
\hline gS 86.2425 & 150mm & 2.40 mm & screw on \\
\hline
\end{tabular}
*Minimum ID of drill hole needed for use with depth gauge.

\section*{instruments for fracture management - 86-87/13}

OD = Outside Diameter
SQC = Small Quick Coupling
gS 86.4371 \(11 / 2^{\prime \prime}\) for OD 3.5 mm shafts gS \(86.43732^{\prime \prime}\) for OD 5.0 mm shafts gS \(86.43753^{\prime \prime}\) for OD 5.0 mm shafts with notch gS \(86.43805^{\prime \prime}\) for OD 7.0 mm shafts with notch

Useful for compression and distraction modes.

Used in conjunction with plates to close larger fracture or osteotomy

Converts SQC end to round end with three flat sides for power drills.
 gaps.
gS \(86.7220 \quad 31 / 2\) " span 20 mm
Tension Device
articulated

For picking up screw from screw rack.

\section*{OD Screw Shaft}
gS \(86.6104 \quad 1.2 \mathrm{~mm}\)
gS \(86.61081 .5 \mathrm{~mm}-2.7 \mathrm{~mm}\)
gS \(86.61103 .5 \mathrm{~mm}-6.5 \mathrm{~mm}\)


\section*{Screw Holding Forceps}

3 1/2"

gS \(86.615571 / \mathbf{2 " ~}^{\prime \prime}\)
Screw Holding Forceps angled, for OD 5.5 mm shaft bone screw

SQC = Small Quick Coupling TiN = Titanium Nitride
gS 87.0012 5 1/2"
Combination Wrench
11 mm

gExtractor, Screw
SQC, counter clockwise thread TiN coated tip

gS 87.0014 7"
Socket Wrench
11mm
Cardan joint


\section*{86-87/16 - instruments for fracture management}

SQC = Small Quick Coupling

Useful for pushing bone fragments into place.

Designed to fit with SQC handles gS 86.0040, gS 86.0045, gS 86.0050 and Spiked Disc gS 87.0022.
gS 87.2006 6 1/2"
Ball Spike SQC
sharp point
straight


Useful for pushing bone fragments into place.

Designed to fit with Spiked Disc gS 87.0022
gS 87.0020 12"

\section*{Ball Spike}
sharp point
straight, phenolic handle


Attaches to the ball tip end of Ball Spikes gS 87.0020 and gS 87.2006 shown on this page.

Also attaches to the ball tip end of Pelvic Reduction Forceps gS 47.6190, gS 47.6192, gS 47.6196, gS 47.6200, gS 47.6204, gS 47.6208, gS 47.6300 and gS 47.6301 shown in Section 46-47 on pages 22-25.

Helps to disperse the force of the ball spike by providing a greater contact area, thereby reducing the risk of penetrating thin bone.

The disc swivels on the ball tip and the points help to reduce slippage and allow for improved alignment onto bone surface.

gSource.

diameter
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline gS 86.8215 & gS 86.8220 & gS 86.8227 & gS 86.8235 & gS 86.8235 & - & gS 86.8425 & - & gS 86.8425 & gS 86.8426 \\
\hline 1.5 mm & 2.0 mm & 2.7 mm & 3.5 mm & 3.5 mm & None & 4.5 mm & None & \begin{tabular}{c}
4.5 mm \\
\begin{tabular}{c} 
For Shaft in \\
Hard Bone \\
4.5 mm
\end{tabular} \\
\hline
\end{tabular} l \\
\hline
\end{tabular}
diameter
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline gS 86.8211 & gS 86.8215 & gS 86.8220 & gS 86.8226 & \[
\begin{gathered}
\text { gS } 86.8220 \\
\text { or } \\
\text { gS } 86.8226
\end{gathered}
\] & \[
\begin{gathered}
\text { gS } 86.8220 \\
\text { or } \\
\text { gS } 86.8226
\end{gathered}
\] & gS 86.8232 & gS 86.8232 & gS 86.8232 & gS 86.8232 \\
\hline 1.1 mm & 1.5 mm & 2.0 mm & 2.5 mm & \[
\begin{gathered}
2.0 \mathrm{~mm} \\
\text { or } \\
2.5 \mathrm{~mm}
\end{gathered}
\] & \[
\begin{aligned}
& 2.0 \mathrm{~mm} \\
& \text { or } \\
& 2.5 \mathrm{~mm}
\end{aligned}
\] & 3.2 mm & 3.2 mm & 3.2 mm & 3.2 mm \\
\hline
\end{tabular}
diameter
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline gS 86.1200 & gS 86.1202 & gS 86.1204 & gS 86.1206 & gS 86.1208 & gS 86.1208 & gS 86.1208 & gS 86.1212 & gS 86.1220 & gS 86.1220 \\
\hline 1.5 mm & 2.0 mm & 2.7 mm & \begin{tabular}{c} 
fine thread \\
3.5 mm
\end{tabular} & \begin{tabular}{c} 
coarse thread \\
3.5 mm
\end{tabular} & 3.5 mm & 4.5 mm & 4.5 mm & 6.5 mm & 6.5 mm \\
\hline
\end{tabular}
diameter
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline gS 86.1004 & gS 86.1004 & gS 86.1006 & gS 86.1006 & gS 86.1006 & gS 86.1006 & gS 86.1020 & gS 86.1010 & gS 86.1020 & gS 86.1020 \\
\hline 1.1 mm & 1.1 mm & 2.0 mm & 2.0 mm & 2.0 mm & 2.0 mm & 4.5 mm & 3.2 mm & 4.5 mm & 4.5 mm \\
\hline
\end{tabular}
diameter
gSource.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { gS } 86.2330 \\
& \text { gS } 86.2405
\end{aligned}
\] & \[
\begin{aligned}
& \text { gS } 86.2330 \\
& \text { gS } 86.2405
\end{aligned}
\] & gS 86.2410 & gS 86.2410 & gS 86.2410 & gS 86.2410 & gS 86.2415 & gS 86.2415 & gS 86.2415 & gS 86.2415 \\
\hline 30 mm & 30 mm & 50 mm & 50 mm & 50 mm & 50 mm & 100 mm & 100 mm & 100 mm & 100 mm \\
\hline \multicolumn{10}{|l|}{Quick Coupling Handle} \\
\hline gS 86.0035 & gS 86.0035 & \[
\begin{aligned}
& \text { gS } 86.0040 \\
& \text { gS } 86.0045
\end{aligned}
\] & gS 86.0040 gS 86.0045 gS 86.0050 & \begin{tabular}{l}
gS 86.0040
gS 86.0045 \\
gS 86.0050
\end{tabular} & \begin{tabular}{l}
gS 86.0040 \\
gS 86.0045 \\
gS 86.0050
\end{tabular} & \begin{tabular}{l}
gS 86.0040 \\
gS 86.0045 \\
gS 86.0050
\end{tabular} & \begin{tabular}{l}
gS 86.0040 \\
gS 86.0045 \\
gS 86.0050
\end{tabular} & \begin{tabular}{l}
gS 86.0040 \\
gS 86.0045 \\
gS 86.0050
\end{tabular} & \begin{tabular}{l}
gS 86.0040 \\
gS 86.0045 \\
gS 86.0050
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { gS } 86.1502 \\
& \text { gS } 86.1504
\end{aligned}
\] & \[
\begin{aligned}
& \text { gS } 86.1502 \\
& \text { gS } 86.1504
\end{aligned}
\] & \begin{tabular}{l}
gS 86.1506 \\
gS 86.4400 \\
gS 86.4410 \\
gS 86.4500 \\
gS 86.4580
\end{tabular} & \begin{tabular}{l}
gS 86.1506 \\
gS 86.4400 \\
gS 86.4410 \\
gS 86.4500 \\
gS 86.4580
\end{tabular} & \begin{tabular}{l}
gS 86.1506 \\
gS 86.4400 \\
gS 86.4410 \\
gS 86.4500 \\
gS 86.4580
\end{tabular} & \begin{tabular}{l}
gS 86.1506 \\
gS 86.4400 \\
gS 86.4410 \\
gS 86.4500 \\
gS 86.4580
\end{tabular} & \begin{tabular}{l}
gS 86.1519 \\
gS 86.4495 \\
gS 86.4520 \\
gS 86.4590 \\
gS 86.4595
\end{tabular} & \begin{tabular}{l}
gS 86.1519 \\
gS 86.4495 \\
gS 86.4520 \\
gS 86.4590 \\
gS 86.4595
\end{tabular} & \begin{tabular}{l}
gS 86.1519 \\
gS 86.4495 \\
gS 86.4520 \\
gS 86.4590 \\
gS 86.4595
\end{tabular} & \begin{tabular}{l}
gS 86.1519 \\
gS 86.4495 \\
gS 86.4520 \\
gS 86.4590 \\
gS 86.4595
\end{tabular} \\
\hline Driver Type & \[
1.5 \mathrm{~mm} \text { Hex }
\] & 1.5mm Hex & \[
\underset{\mathrm{Hex}}{2.5 \mathrm{~mm}}
\] & \[
3.5 \mathrm{~mm}
\]
Hex & 3.5 mm Hex & 3.5 mm Hex & 3.5 mm Hex \\
\hline & Cruciform
ك & \begin{tabular}{l}
Cruciform \\
马
\end{tabular} & \(\square\) \\
\hline
\end{tabular}

OAL = Overall Length
OD = Outside Diameter
QTY = Quantity
- Handy container to store and dispense K-wires and Steinmann pins.
- Each dispenser is clearly marked with the inch/mm OD of the wires/pins held for quick identification.
- Dispenser is perforated at one end.
- Conical shaped end dispenses one wire at a time.
- It is recommended to load blunt end first.
- Will only dispense smooth (unthreaded) wires and pins.

Dispensers store and dispense smooth (unthreaded) wires and pins only.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & & & & Max Qty & Max Qty \\
\hline & OAL & OAL & OD & Stored - & Stored - \\
\hline & Dispenser & Wire/Pin Stored & Wire/Pin Stored & Not Dispensed & Dispensed \\
\hline gS 98.2002 & \(63 / 4 "\) & \(4{ }^{\prime \prime}, 5 "\), and 6 " & 0.7 mm [.028"] & 120 & 24 \\
\hline gS 98.2003 & \(63 / 4 "\) & \(4{ }^{\prime \prime}, 5 "\), and 6 " & 0.9mm [.035"] & 78 & 18 \\
\hline gS 98.2005 & \(63 / 4 "\) & 4", 5", and 6" & 1.1 mm [.045"] & 54 & 18 \\
\hline gS 98.2007 & \(63 / 4 "\) & \(4{ }^{\prime \prime}, 5 "\), and 6" & 1.4 mm [.054"] & 30 & 18 \\
\hline gS 98.2009 & \(63 / 4 "\) & \(4 ", 5 "\), and 6" & 1.6 mm [.062"] & 24 & 18 \\
\hline gS 98.2011 & \(13 "\) & 9" and 12" & 0.9mm [.035"] & 78 & 30 \\
\hline gS 98.2013 & \(13 "\) & 9 Cl and 12" & 1.1 mm [.045"] & 54 & 24 \\
\hline gS 98.2015 & \(13 "\) & \(9{ }^{\prime \prime}\) and 12" & 1.4 mm [.054"] & 30 & 18 \\
\hline gS 98.2017 & \(13 "\) & 9 Cl and 12" & 1.6 mm [.062"] & 24 & 18 \\
\hline gS 98.2019 & \(13 "\) & \(9{ }^{\prime \prime}\) and 12" & 2.0 mm [.079"] & 12 & 6 \\
\hline gS 98.2021 & \(13 "\) & 9" and 12" & 2.4 mm [.094"] & 12 & 6 \\
\hline
\end{tabular}
gS 98.2018 replacement cap only, plastic, white

\section*{K-Wire and Pin Dispenser}
stainless steel
plastic cap, white

\section*{98-99/2 - containers}

OAL = Overall Length
OD = Outside Diameter
QTY = Quantity
- Store and dispense four different wire diameters from one dispenser.
- Wires are dispensed one at a time.
- Can be closed when not in use.
- Chambers are clearly marked with \(\mathrm{mm} / \mathrm{inch}\) OD of the wires/pins held.
- Will only dispense smooth (unthreaded) wires and pins.

Dispensers store and dispense smooth (unthreaded) wires and pins only.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{gS 98.5210} & \multirow{7}{*}{\begin{tabular}{l}
OAL \\
Dispenser \\
5 1/2"
\end{tabular}} & \multicolumn{2}{|l|}{OAL} & Max Qty & Max Qty & & \multirow[t]{7}{*}{*} \\
\hline & & Wire/Pin & OD & Stored - & Stored - & & \\
\hline & & Stored & Wire/Pin Stored & Not Dispensed & Dispensed & & \\
\hline & & \(4 "\) & 0.9mm [.035"] & 60 & 18 & & \\
\hline & & & 1.1 mm [.045"] & 30 & 12 & & \\
\hline & & & 1.4mm [.054"] & 24 & 12 & & \\
\hline & & & 1.6 mm [.062"] & 18 & 6 & 910 & \\
\hline \multirow[t]{4}{*}{gS 98.5230} & \multirow[t]{4}{*}{71/2"} & \multirow[t]{4}{*}{\(6 "\)} & 0.9 mm [.035"] & 60 & 18 & & \\
\hline & & & 1.1 mm [.045"] & 30 & 12 & & \\
\hline & & & 1.4 mm [.054"] & 24 & 12 & & \\
\hline & & & 1.6 mm [.062"] & 18 & 6 & & \\
\hline \multirow[t]{4}{*}{gS 98.5240} & \multirow[t]{4}{*}{10 1/2"} & \multirow[t]{4}{*}{9"} & 0.9 mm [.035"] & 60 & 18 & & \\
\hline & & & 1.1 mm [.045"] & 30 & 12 & & \\
\hline & & & 1.4mm [.054"] & 24 & 12 & & \\
\hline & & & 1.6 mm [.062"] & 18 & 6 & & \\
\hline \multirow[t]{4}{*}{gS 98.5245} & \multirow[t]{4}{*}{\(101 / 2^{\prime \prime}\)} & \multirow[t]{4}{*}{9"} & 1.6 mm [.062"] & 18 & 6 & & \% \\
\hline & & & 2.0 mm [.079"] & 12 & 6 & & \\
\hline & & & 2.0 mm [.079"] & 12 & 6 & & \\
\hline & & & 2.4 mm [.094"] & 6 & 6 & - & \\
\hline \multirow[t]{4}{*}{gS 98.5250} & \multirow[t]{4}{*}{13 1/2"} & \multirow[t]{4}{*}{\(12^{\prime \prime}\)} & 0.9mm [.035"] & 60 & 18 & & \\
\hline & & & 1.1 mm [.045"] & 30 & 12 & & \\
\hline & & & 1.4 mm [.054"] & 24 & 12 & & \\
\hline & & & 1.6 mm [.062"] & 18 & 6 & & \\
\hline \multirow[t]{4}{*}{gS 98.5260} & \multirow[t]{4}{*}{13 1/2"} & \multirow[t]{4}{*}{\(12^{\prime \prime}\)} & 1.6 mm [.062"] & 18 & 6 & & \\
\hline & & & 2.0 mm [.079"] & 6 & 6 & & \\
\hline & & & 2.0 mm [.079"] & 6 & 6 & & \\
\hline & & & 2.4 mm [.094"] & 8 & 5 & & 4 \\
\hline \multicolumn{7}{|l|}{gS 98.5206 replacement cap only, plastic, white, screw on style} & \\
\hline Four Cham stainless ste plastic screw & bered K-Wir on cap, whit & and Pin & Dispenser & & gS 98.5210 & gS 98.5240 & gS 98.5260 \\
\hline
\end{tabular}
- Instrument stringer holds finger ring handle instruments securely ensuring instruments stay open during sterilization.
- Locking ball closure keeps cross bar in place.
- Stay-closed design prevents accidental opening.
- Expertly hand finished to eliminate any sharp edges.
- Made from German stainless steel.
- To open or close: squeeze side bars together, then fold back cross bar.
\begin{tabular}{ll}
\(21 / 2 "\) & \(31 / 2^{\prime \prime}\) \\
wide & wide
\end{tabular}
gS \(98.21044^{\prime \prime}\)
gS 98.2106 6" gS 98.2206 6"
gS 98.2108 8" gS 98.2208 8" gS 98.2110 10"
gS 98.2112 12"
gS 98.2114 14"
Instrument Stringer
with lock



```

 bristles
 gS 99.0100 steel
gS 99.0102
nylon
Instrument Cleaning Brush
7"
plastic handle, black

```


OD
gS \(99.1011 \quad 1.1 \mathrm{~mm}\)
gS 99.1016 1.6mm
gS 99.1025 2.5mm
Cleaning Stylet
8 1/2"
ring handle

Double Trocar-Smooth
\(\stackrel{\rightharpoonup}{\gtrless}>\)
Double Trocar-Full Thread
\(\bigcirc\) S
Single Trocar-Smooth
\(\curvearrowright \longrightarrow\)
Single Trocar-Partial Thread 25 mm
 \(\qquad\)
Single Trocar-Full Thread


Double Diamond-Smooth

Single Diamond-Smooth
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{K-Wires 4" - diameters} & \multicolumn{5}{|l|}{K-Wires 6" - diameters} \\
\hline \[
\begin{aligned}
& 0.7 \mathrm{~mm} \\
& {\left[.028^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \mathrm{~mm} \\
& {\left[.035^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \mathrm{~mm} \\
& {\left[.045^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \mathrm{~mm} \\
& {\left[.054^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \mathrm{~mm} \\
& {\left[.062^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \mathrm{~mm} \\
& {\left[.028^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \mathrm{~mm} \\
& {\left[.035^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \mathrm{~mm} \\
& {\left[.045^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \mathrm{~mm} \\
& {\left[.054^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \mathrm{~mm} \\
& {\left[.062^{\prime \prime}\right]}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{78.2000} & 78.2010 & 78.2020 & 78.2040 & 78.2030 & 78.1210 & 78.1220 & 78.1230 & 78.1240 & 78.1250 \\
\hline & & & & 78.4210 & & & & & 78.4230 \\
\hline \multirow[t]{2}{*}{78.2300} & 78.2310 & 78.2320 & 78.2330 & 78.2340 & 78.2800 & 78.2810 & 78.2820 & 78.2840 & 78.2850 \\
\hline & & & & 78.9110 & & & & & 78.9114 \\
\hline & & & & 78.4080 & & & & & 78.4090 \\
\hline 78.3000 & 78.3010 & 78.3020 & 78.3030 & 78.3040 & 78.1300 & 78.1310 & 78.1320 & 78.1340 & 78.1330 \\
\hline 78.3300 & 78.3310 & 78.3320 & 78.3330 & 78.3340 & 78.3350 & 78.3360 & 78.3370 & 78.3380 & 78.3390 \\
\hline
\end{tabular}
gSource K-Wires are sold separately in non-sterile packages of 6 each. They
 are precision ground from certified implant stainless steel and have smooth tapered points which are expertly machined for easier penetration.

See above chart for quick reference or Section 78-79 pages 1-2 in this catalog. Please inquire about the availability of any size and style not shown.

Rack folds to close for convenient storage. When opened, it converts to a table top stand for use in the operating room.

Closed position for storage. \(83 / 4\) " x 5 1/2" x 1 1/2"

gS 98.5404 8 3/4"
Open position anodized aluminum
gRack, K-Wire
stores 4 " and 6 " k-wires, 6 each (sold separately)
0.7 mm to \(1.6 \mathrm{~mm}\left[.028\right.\) " to \(\left..062{ }^{\prime \prime}\right]\)

Double Trocar-Smooth
\(\gtrless \gtrless\)


Single Trocar-Smooth
\(\stackrel{\gtrless}{\text { Single Trocar-Threaded }}\)

Double Diamond-Smooth
\(\longrightarrow \longrightarrow\)
Double Diamond-
Full Thread
\({ }^{\circ}\)
Single Diamond-Smooth
\(\longrightarrow \square\)
Single Diamond-Threaded \(\rightarrow\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{K-Wires 9"- diameters} & \multicolumn{7}{|l|}{Steinmann Pins 9" - diameters} \\
\hline \[
\begin{aligned}
& 0.7 \mathrm{~mm} \\
& {\left[.028^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \mathrm{~mm} \\
& {\left[.035^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \mathrm{~mm} \\
& {\left[.045^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \mathrm{~mm} \\
& {\left[.054^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \mathrm{~mm} \\
& {\left[.062^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \mathrm{~mm} \\
& {\left[5 / 64^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 2.4 \mathrm{~mm} \\
& {\left[3 / 32^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \mathrm{~mm} \\
& {[7 / 64 "]}
\end{aligned}
\] & \[
\begin{gathered}
3.2 \mathrm{~mm} \\
{\left[1 / 8^{\prime \prime}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& 3.5 \mathrm{~mm} \\
& {\left[9 / 64^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \mathrm{~mm} \\
& {\left[5 / 32^{\prime \prime}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \mathrm{~mm} \\
& {\left[.1777^{\prime \prime}\right]}
\end{aligned}
\] \\
\hline 78.2105 & 78.2110 & 78.2120 & 78.2140 & 78.2130 & 78.5500 & 78.5530 & 78.5560 & 78.5590 & 78.5620 & 78.5650 & 78.5680 \\
\hline & & & & 78.4030 & 78.8500 & 78.8530 & 78.8560 & 78.8590 & 78.8620 & 78.8650 & 78.8680 \\
\hline 78.2500 & 78.2510 & 78.2520 & 78.2540 & 78.2530 & 78.6100 & 78.6130 & 78.6160 & 78.6190 & 78.6220 & 78.6250 & 78.6280 \\
\hline & & & & 78.9116 & 78.8700 & 78.8730 & 78.8760 & 78.8780 & 78.8820 & 78.8850 & 78.8880 \\
\hline 78.3100 & 78.3110 & 78.3120 & 78.3140 & 78.3130 & 78.7000 & 78.7030 & 78.7060 & 78.7090 & 78.7120 & 78.7150 & 78.7180 \\
\hline & & & & & 78.8300 & 78.8330 & 78.8360 & 78.8390 & 78.8420 & 78.8450 & 78.8480 \\
\hline 78.3400 & 78.3410 & 78.3420 & 78.3440 & 78.3430 & 78.7780 & 78.7630 & 78.7660 & 78.7690 & 78.7720 & 78.7750 & 78.7782 \\
\hline & & & & & 78.8000 & 78.8030 & 78.8060 & 78.8090 & 78.8120 & 78.8150 & 78.8180 \\
\hline
\end{tabular}
gSource K-Wires are sold separately in non-sterile packages of 6 each. They are precision ground from certified implant stainless steel and have smooth tapered points which are expertly machined for easier penetration.

See above chart for quick reference or Section 78-79 pages 1-2 in this catalog. Please inquire about the availability of any size and style not shown.

Rack folds to close for convenient storage. When opened, it converts to a table top stand for use in the operating room.

Closed position for storage. 12 1/2" x 5 1/2" x 1 1/2"
gS 98.5409 12 1/2"
anodized aluminum
gRack, K-Wire and Pin
stores 9" k-wires and pins, 6 each (sold separately)
0.7 mm to \(4.5 \mathrm{~mm}\left[.028^{\prime \prime}\right.\) to \(\left..177^{\prime \prime}\right]\)


Rack folds to close for convenient storage. When opened, it converts to a table top stand for use in the operating room.

Rack stores 1 each of the following gSource part numbers:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{SQC Handle gS 86.0040 black plastic and stainless steel}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { OAL } \\
& 41 / 2^{\prime \prime}
\end{aligned}
\]} \\
\hline & & \\
\hline & & \\
\hline SQC Star Bits & Size & OAL \\
\hline gS 86.1604 & T4 & 3 1/2" \\
\hline gS 86.1608 & T8 & \(31 / 2^{\prime \prime}\) \\
\hline gS 86.1715 & T15 & 3 1/2" \\
\hline gS 86.1725 & T25 & \(31 / 2^{\prime \prime}\) \\
\hline SQC Hex Bits & Size & OAL \\
\hline gS 86.1915 & 1.5 mm & 3 1/2" \\
\hline gS 86.1925 & 2.5 mm & \(31 / 2^{\prime \prime}\) \\
\hline gS 86.1935 & 3.5 mm & \(31 / 2 "\) \\
\hline gS 86.1940 & 4.0 mm & 3 1/2" \\
\hline
\end{tabular}
gS 98.4050 5 3/4"
anodized aluminum
gRack, Screwdriver Bits SQC
stores 4 SQC star bits, 4 SQC hex bits, 1 SQC handle 1 each (sold separately)

OAL
\(41 / 2^{\prime \prime}\)

OAL
3 1/2"
3 1/2"
3 1/2"
3 1/2"
OAL
3 1/2"
1/2"
1/2"

\section*{}


\section*{\(\rightarrow\)}


Rack folds to close for convenient storage. When opened, it converts to a table top stand for use in the operating room.

Drill bit diameter and reorder numbers are marked inside rack for easy identification.

Rack stores 1 each of the following gSource part numbers:
\begin{tabular}{lll} 
& OD & OAL \\
gS 86.8211 & 1.1 mm & 60 mm \\
gS 86.8215 & 1.5 mm & 85 mm \\
gS 86.8220 & 2.0 mm & 100 mm \\
gS 86.8222 & 2.2 mm & 110 mm \\
gS 86.8226 & 2.5 mm & 110 mm \\
gS 86.8228 & 2.7 mm & 125 mm \\
gS 86.8235 & 3.5 mm & 110 mm
\end{tabular}
gS 98.8178 7"
stainless steel
gRack, SQC Twist Drill
stores 7 SQC twist drills, 1 each (sold separately)
1.1 mm to 3.5 mm [.045" to .138 "]


Open position as a table top stand. Loaded

\section*{98-99/8 - containers}

OAL = Overall Length
OD = Outside Diameter
Twist Drill rack folds to close for convenient storage. When opened, it converts to table top stand for use in the operating room.

Drill bit diameter and reorder numbers are marked inside rack for easy identification.


Closed position for storage.
6 3/4" x 4 1/4" x 3/4"
Empty

Rack stores the following gSource part numbers:
\begin{tabular}{llll} 
& & & Max \\
OS 86.8415 & OD & OAL & \begin{tabular}{l} 
Stored
\end{tabular} \\
gS 86.8420 & 2.0 mm & 127 mm & 2 \\
gS 86.8425 & 2.5 mm & 127 mm & 2 \\
gS 86.8427 & 2.7 mm & 127 mm & 2 \\
gS 86.8432 & 3.2 mm & 127 mm & 1 \\
gS 86.8435 & 3.5 mm & 127 mm & 1 \\
gS 86.8440 & 4.0 mm & 127 mm & 1 \\
gS 86.8445 & 4.5 mm & 127 mm & 1 \\
gS 86.8448 & 4.7 mm & 127 mm & 1 \\
gS 86.8450 & 5.0 mm & 127 mm & 1
\end{tabular}
gS 98.8127 63/4"
stainless steel
Twist Drill Rack
stores 13 drill bits with round end (sold separately)


Loaded

Nylon coated brackets help avoid metal-to-metal contact.

Side arms stay locked to prevent curettes from falling out.

Rack stores any 12 of the following gSource part numbers:
\begin{tabular}{llrl} 
\# & cup width & \begin{tabular}{r} 
straight
\end{tabular} & \begin{tabular}{c} 
angled \\
\(5 / 0\)
\end{tabular} \\
2.2 mm & gS 51.6110 & gS 51.6400 \\
\(4 / 0\) & 2.5 mm & gS 51.6120 & gS 51.6401 \\
\(3 / 0\) & 2.8 mm & gS 51.6130 & gS 51.6402 \\
\(2 / 0\) & 3.3 mm & gS 51.6150 & gS 51.6403 \\
0 & 3.7 mm & gS 51.6170 & gS 51.6404 \\
1 & 4.3 mm & gS 51.6190 & gS 51.6410 \\
2 & 4.8 mm & gS 51.6210 & gS 51.6420 \\
3 & 5.6 mm & gS 51.6230 & gS 51.6430 \\
4 & 6.1 mm & gS 51.6250 & gS 51.6440 \\
5 & 6.7 mm & gS 51.6290 & gS 51.6450 \\
6 & 8.8 mm & gS 51.6310 & gS 51.6460
\end{tabular}
gS \(98.6020 \quad 10 "\)
anodized aluminum, stainless steel latches
gRack, Brun Curettes
stores 12 7" Brun curettes, (sold separately)
\#5/0 to \#6 [2.2mm to 8.8 mm ]


Nylon coated brackets help avoid metal-to-metal contact.

Side arms stay locked to prevent osteotomes from falling out.

Rack stores 2 each of the following tip widths:
\begin{tabular}{lccc}
\multicolumn{2}{c}{ tip width } & straight & curved \\
\(1 / 4^{\prime \prime}\) & {\([6 \mathrm{~mm}]\)} & gS 52.4040 & gS 52.4280 \\
\(1 / 2^{\prime \prime}\) & {\([13 \mathrm{~mm}]\)} & gS 52.4060 & gS 52.4290 \\
\(3 / 4^{\prime \prime}\) & {\([19 \mathrm{~mm}]\)} & gS 52.4100 & gS 52.4300 \\
\(1 "\) & {\([25 \mathrm{~mm}]\)} & gS 52.4140 & gS 52.4310 \\
\(11 / 4^{\prime \prime}\) & {\([32 \mathrm{~mm}]\)} & gS 52.4180 & gS 52.4320 \\
\(11 / 2^{\prime \prime}\) & {\([38 \mathrm{~mm}]\)} & gS 52.4220 & gS 52.4330
\end{tabular}
gS \(98.6040{ }^{12 "}\)
anodized aluminum, stainless steel latches
gRack, Lambotte Osteotomes
stores 12 9" Lambotte osteotomes (sold separately)
6 mm to 38 mm [1/4" to \(11 / 2^{\prime \prime}\) ]


\section*{98-99/10 - containers}

\section*{did you know...?}

Instrument care and cleaning recommendations can be found in Section 100 of this catalog or on the gSource website at www.gSource.com.

gSource.
metric - metric conversions
\begin{tabular}{|c|c|c|}
\hline to convert & to & multiply by \\
\hline millimeters (mm) & centimeters (cm) & 0.1 \\
\hline millimeters (mm) & meters (m) & 0.001 \\
\hline centimeters (cm) & millimeters (mm) & 10 \\
\hline centimeters (cm) & meters (m) & 0.01 \\
\hline meters (m) & millimeters (mm) & 1,000 \\
\hline meters (m) & centimeters (cm) & 100 \\
\hline grams (g) & kilograms (kg) & 0.001 \\
\hline kilograms (kg) & grams (g) & 1,000 \\
\hline \multicolumn{3}{|l|}{english - metric conversions} \\
\hline to convert & to & multiply by \\
\hline inches & millimeters (mm) & 25.4 \\
\hline inches & centimeters (cm) & 2.54 \\
\hline millimeters (mm) & inches & 0.0394 \\
\hline centimeters (cm) & inches & 0.394 \\
\hline ounces (oz) & grams (g) & 28.3 \\
\hline pounds (lbs) & kilograms (kg) & 0.454 \\
\hline grams (g) & ounces (oz) & 0.035 \\
\hline kilograms (kg) & pounds (lbs) & 2.20 \\
\hline
\end{tabular}


\section*{fractions to millimeters}
\begin{tabular}{ll} 
inch & millimeters \\
\hline \(1 / 16\) & 1.59 \\
\(1 / 8\) & 3.18 \\
\(3 / 16\) & 4.74 \\
\(1 / 4\) & 6.35 \\
\(5 / 16\) & 7.94 \\
\(3 / 8\) & 9.53 \\
\(7 / 16\) & 11.11 \\
\(1 / 2\) & 12.70 \\
\(9 / 16\) & 14.29 \\
\(5 / 8\) & 15.88 \\
\(11 / 16\) & 17.46 \\
\(3 / 4\) & 19.05 \\
\(13 / 16\) & 20.64 \\
\(7 / 8\) & 22.23 \\
\(15 / 16\) & 23.81 \\
1 & 25.40
\end{tabular}
french scale fr/mm
measures outside diameter
3 fr 1.0 m
\(4 \mathrm{fr} \quad 1.3 \mathrm{~mm}\)
1.7 mm
2.0 mm
fr \(\quad 2.3 \mathrm{~mm}\)
2.7 mm
3.0 mm
3.3 mm
3.7 mm
4.0 mm
4.3 mm
4.7 mm
5.0 mm
5.3 mm
5.7 mm
6.0 mm
6.3 mm
6.7 mm
7.3 mm
8.0 mm
8.7 mm
9.3 mm
10.0 mm
10.7 mm 11.3 mm

\section*{100/2 - conversion charts}

\section*{운}

temperature scale
Fahrenheit ( \({ }^{\circ} \mathrm{F}\) ) to
Centigrade ( \({ }^{\circ} \mathrm{C}\) )
\begin{tabular}{rr}
\({ }^{\circ} \mathrm{F}\) & \multicolumn{1}{c}{\({ }^{\circ} \mathrm{C}\)} \\
\hline 500 & 260 \\
428 & 220 \\
392 & 200 \\
374 & 190 \\
356 & 180 \\
338 & 170 \\
320 & 160 \\
302 & 150 \\
284 & 140 \\
266 & 130 \\
248 & 120 \\
239 & 115 \\
230 & 110 \\
221 & 105 \\
212 & 100 \\
203 & 95 \\
194 & 90 \\
185 & 85 \\
176 & 80 \\
167 & 75 \\
158 & 70 \\
149 & 65 \\
140 & 60 \\
131 & 55 \\
122 & 50 \\
113 & 45 \\
104 & 40 \\
95 & 35 \\
86 & 30 \\
77 & 25 \\
68 & 20 \\
59 & 15 \\
50 & 10 \\
41 & 5 \\
32 & 0 \\
23 & -5 \\
14 & -10 \\
5 & -15 \\
0 & -17 \\
-43 & -20 \\
-40 & -25 \\
\hline 40 & -40 \\
&
\end{tabular}

\section*{Proper care and maintenance will greatly prolong the life of your instruments.}

Newly purchased instruments must be cleaned, lubricated and autoclaved before use.

\section*{Proper use}

Instruments are designed for a particular purpose and should be used only for that purpose. Even the strongest instrument can be damaged when used inappropriately, such as when scissors are used to cut wire.

\section*{Water and Stainless Steel}

Regular tap water contains minerals that can cause discoloration and staining. We recommend using distilled water for cleaning, disinfecting, sterilizing and rinsing. To avoid staining, use a cleaning solution with a pH near neutral (7). Instruments should be placed in distilled water immediately after use. They should never be placed in saline solution, as it may cause corrosion and eventually irreversible damage to the instrument.

\section*{Manual Cleaning}

When handling instruments, be careful not to damage fine tips and mechanisms. If instruments have been exposed to blood, tissue, saline or other foreign matter, they must be rinsed in warm water before these substances are allowed to dry. Failure to do so may cause rusting. After rinsing, immerse them in a cleaning and disinfecting solution.

Because many compounds, including certain chemicals, are highly corrosive to stainless steel, rinse and dry instruments immediately if they come into contact with any potentially harmful substances.

If no ultrasonic cleaner is available, clean the instrument very carefully. Pay particular attention when cleaning box locks, serrations, hinges and other hard-to-reach areas. Use nylon (not steel) brushes and warm (not hot) cleaning solutions. Follow the manufacturer's instructions for the preparation of the cleaning solutions. Change these solutions daily.

\section*{Ultrasonic Cleaning}

Ultrasonic cleaning is the most effective and efficient way to clean instruments. To maximize its effectiveness, instruments should be cleaned of all visible debris before they are placed in an ultrasonic cleaner.

When using ultrasonic cleaners:
- Do not mix dissimilar metals, e.g., chrome and stainless, in the same cycle.
- Use only designated cleaners. Open all instruments so ratchets and box locks are accessible.
- Whenever possible, disassemble instruments for optimal cleaning.
- Avoid piling instruments on top of each other.
- Remove and rinse off instruments immediately after the cycle is finished.
- Allow instruments to air-dry.
- Lubricate all moving parts after cleaning and before sterilization.
- Use only lubricants specifically designed for surgical instruments.
- Change the ultrasonic cleaning solution daily.

\section*{Instrument Checkup}

The best time to review the condition of instruments is after they have been cleaned, lubricated and before sterilization. Check for:

\section*{Function}
"Sharps" must cut cleanly (resharpen if needed) and close properly. Check for burrs along the cutting edges. Needle holders and clamps must engage properly and meet correctly at the tips.

\section*{Surface}

Inspect surfaces for any sign of staining, cracking or other irregularities. Common sources of staining are:
- Inadequate cleaning.
- Mixing dissimilar metals.
- Impurities in the water.
- Unsuitable or improper preparation and usage of cleaning and disinfecting agents.
- Noncompliance with operating procedures of cleaning and sterilizing equipment.

\section*{Lubrication and Autoclaving}

All instruments must be properly cleaned before autoclaving. Moving parts, such as box locks and hinges, should be well lubricated. Be sure to use surgical lubricants and not industrial oils.

Always sterilize instruments in the open, unlocked position.

We recommend that instruments be wrapped in cloth and then placed in the container, or that a cloth be put on the bottom of the pan to absorb moisture.

The cloth should be \(\mathrm{pH}(7)\) neutral and free of detergent residues.

\section*{100/4 - instrument care \& cleaning}

Finally, avoid sudden cooling. Instruments should be allowed to air-dry.

\section*{Cold Sterilizing or Disinfecting}

Prolonged immersion in disinfecting or sterilizing solution can damage surgical instruments. Do not soak instruments for longer than 20 minutes. To render the instruments sterile and ready for use, we recommend using an autoclave.

\section*{Avoid BAC}

Instruments with tungsten carbide inserts, such as wire cutters, needle holders and TC scissors, should never be immersed in sterilizing solutions containing benzyl ammonium chloride (BAC). BAC will soften and dissolve the tungsten carbide. Never use bleach as it will cause severe pitting.

\section*{Storage}

Once instruments are thoroughly dry, store them in a clean, dry environment. Never put them in areas where chemicals may emit corrosive vapors or where temperature and moisture variations could cause condensation on the instruments.

\section*{Instrument Care Checklist}
1. Rinse and soak soiled instruments immediately after use. Thoroughly clean before autoclaving.
2. Clean, autoclave and sterilize instruments in an open position.
3. Do not stack or entangle instruments.
4. Follow the manufacturer's recommendations when using equipment and cleaning solutions.
5. Keep instruments properly lubricated.
6. Inspect instruments regularly.
7. Have instruments repaired if needed to increase longevity and maintain proper function.
8. Use tip protectors to protect sharp or delicate working ends.

\section*{Surgical Instruments}

Visually inspect the instrument surface. The surface should be clean, smooth and free from crevices, rough spots and grinding marks, as these could provide an opportunity for corrosion and also harbor bacteria. Carefully examine the tips of the instrument, blades, handles, box locks, alignment, and working end or tip.

\section*{Tungsten Carbide Instruments}

Tungsten carbide inserts should not have any gaps or holes in the solder that could collect surgical debris that might lead to corrosion and pitting. The insert seam should be almost invisible.

\section*{Ratcheted Instruments}

Ratchets should be beveled so there are no sharp edges. They should be smooth and clean. The ratchets should lock and unlock easily without excessive force.

\section*{Scissors}
- To test the sharpness and proper alignment of scissors, cut a latex glove or rubber dam from the mid-point of the scissors blades to the distal end. The scissors should cleanly cut the latex without "chewing" it between the scissors blades.
- Hold the scissors up to the light, and while closing the scissors, confirm that the blades contact only at one point on the lead cutting edge of the scissors. This test confirms correct alignment of the blades and that a proper helix curve exists on the opposing blades (this places the control of the scissors in the surgeon's hand).
- Open the scissors. Holding onto the bottom ring of the scissors, drop the top ring. The distal tips of the blades should remain \(1 / 2\) to \(1 / 3\) open. If the blade closes completely, the scissors are too loose. If it closes less than halfway, the scissors are too tight.
- Lay the scissors flat on a table. Look from the rings toward the tip. If the left shank is higher, then the scissors are too loose. If the right shank is higher, then the scissors are too tight.

\section*{Needle Holders}
- When the tips touch, the ratchet should just touch on the first tooth. If the ratchet does not touch, excessive pressure will be placed upon the jaws when grasping a suture needle. This condition could lead to metal fatigue and stress crack failure.
- Hold the needle holder up to the light. You should be able to see light through the serrations, with the jaws touching at the distal tip. When the jaws are fully closed, you should not be able to see light through the serrations.
- Close the jaws on a piece of aluminum foil. You should see an even mesh pattern with no gaps or pinholes.
- Place an appropriate size needle in the jaws of the needle holder and close on the second ratchet tooth. It should not twist, turn, or slip under pressure.

\section*{Hemostats and Clamps}
- Close a standard hemostat clamp. The tips of the jaws should touch on the first ratchet tooth. In addition, the jaws should close gradually, in thirds, as the clamp is being ratcheted down.
- Clamps need more ratchet teeth than other instruments in order to allow the surgeon precise controlled occlusion. A properly adjusted clamp should have the distal tips touching when the instrument is closed to the middle ratchet.
- The instrument should have a flexible feel to it when being locked and unlocked. Hold onto the top ring handle and drop the bottom ring. The handle should not swing freely, but move with minimal effort.
- It is important to check the box lock and verify that there is no "play" in the box lock. This is especially critical on long clamps because a little movement in the box lock becomes significantly more movement at the tip of the jaw. This could lead to improper meshing of the teeth and potential tearing of delicate vessels because of the movement in the alignment of the jaws.

\section*{Spinal Punches and Rongeurs}
- A properly sharpened rongeur should cut a business card cleanly or leave an even indentation. Due to the variety of business cards and the materials used in making them, the thickness may vary. When using a thick business card, a clean cut may not be achieved and an even indentation will indicate a sharp instrument.
- Intervertebral disc rongeurs should grasp a human hair firmly and cut it cleanly. The jaws should meet precisely and should always be sharpened from the inside of the jaws (not ground or filed from outside) to maintain proper cutting alignment.
- Squeeze the spinal punch handle closed. The action should be smooth with no grinding or catching. When closed, the moving shaft (slider) should touch the foot plate, not traveling too far, causing stress to the foot plate.

\section*{100/6 - inspection \& measurement guidelines}
- The handle should spring back quickly when released. If the handle does not spring back, check to make sure the spinal punch has been properly cleaned and lubricated.
- Hold the spinal punch up to the light in the closed position. The jaws of the instrument should meet precisely to assure proper function (no light should shine through the jaws).
- Double action rongeurs should be free of play in the shanks and jaws.

\section*{Curettes}
- The cup profile should be flat across the top without nicks or gouges.
- A properly sharpened curette when scraped against a piece of plastic, should plane off "ribbons" of plastic.

\section*{Measurement Guidelines}

To measure the total length of an instrument, start at the bottom of the instrument and measure to the farthest tip in a straight line.
See Figure A.
For curved and angled instruments, the distance of a perpendicular line drawn from the bottom of the instrument to the farthest point will determine the overall instrument length.
See Figure B.
The jaw length of a clamp is the distance of a perpendicular line drawn from the beginning of the jaw to the tip of the working end. See Figure C.

Common jaw surfaces on hemostats and clamps are shown in Figure D.

Figure A


Figure B


Figure C
Jaw Length


Figure D
Common Jaw Surfaces

lateral longitudinal (horizontal) (vertical) (diamond)
set nameamputation
bone - graft ..... 2
bone - holding, large ..... 3
bone - holding, small ..... 3
bone - large ..... 4
bone - small ..... 4
forefoot ..... 5
fragment - large ..... 8
fragment - mini ..... 6
fragment - small ..... 7
hand ..... 9
hip - basic, total ..... 10
joint - basic, total ..... 11
joint - ortho, small ..... 12-13
knee ..... 14
orthopedic - major ..... 15-16
orthopedic - minor ..... 17-18
pelvic ..... 19
pin removal ..... 18
podiatry - basic ..... 20
podiatry - nail pack ..... 20
shoulder ..... 21
spine - anterior lumbar ..... 22

\section*{101/2 - instrument sets}

\section*{Amputation}
\begin{tabular}{lr} 
part number & qty \\
gS 12.1600 & 2 \\
gS 36.3660 & 2 \\
gS 43.3660 & 1 \\
gS 45.4340 & 1 \\
gS 52.4650 & 1 \\
gS 62.7540 & 1 \\
gS 63.4740 & 1 \\
gS 63.4982 & 1 \\
gS 65.7130 & 3 \\
gS 65.7140 & 3 \\
gS 65.7170 & 2 \\
gS 65.7431 & 1 \\
gS 65.8120 & 1 \\
gS 66.5580 & 1 \\
gS 75.3280 & 1 \\
gS 75.9340 & 1
\end{tabular}

\section*{description}

Scalpel Handle \#4 standard 5 1/4"
Volkmann Retractor 8 1/2" 6 prongs sharp
1
Key Elevator 8 1/2" width 1"
Volkmann Bone Hook 8" sharp 25mm
Hibbs Osteotome 9 1/2" straight 1" [25mm]
Putti Bone Rasp double ended 10 1/2" 18mm flat tapered to 4 mm
Stille-Horsley Forceps 10" angled double action

3
Gigli Saw Blade 12" [30cm]
Gigli Saw Blade 20" [50cm]
Gigli Saw Handle 2 1/2"
Satterlee Bone Saw 13" with 10" blade stainless ring handle chrome
Liston Amputation Knife 6 3/4" blade
Stille-Luer Rongeur 8 1/2" straight 10 mm double action
Baron Suction Tube \(51 / 2 " 5\) french 30 degrees working length 75 mm

\section*{Bone - Graft}
part number
gS 36.5580
qty
2
gS 40.1010
gS 40.1012
gS 40.1016
gS 40.1020
gS 40.1022
gS 40.1026
gS 40.1030
gS 40.1035
gS 40.1040
gS 40.1052
gS 40.1054
gS 40.1056
gS 40.1058
gS 43.4220
gS 43.4400
gS 46.2300
gS 52.4040
gS 52.4060
gS 52.4100
gS 52.4140
gS 52.4220
gS 52.4280
gS 52.4290
gS 52.4300
gS 56.4870
gS 56.5020
gS 60.9990

\section*{description}

Taylor Spinal Retractor 7 1/2" x 3" pointed
Caspar Distractor Right body 2 1/2" spread
Caspar Distractor Right body 3 1/4" spread long bar
1 Caspar Distractor Right Drill Guide
1 Caspar Distractor Left body 2 1/2" spread
1 Caspar Distractor Left body 3 1/4" spread long bar
1 Caspar Distractor Left Drill Guide
1 Caspar Bone Graft Holder and Impactor 8 1/4"
1 Screwdriver 8" for Distraction Screws
1 Twist Drill 5 3/4" for 1.7 mm distraction screws 8 mm depth
1 Distraction Screws 12 mm
1 Distraction Screws 14 mm
1 Distraction Screws 16 mm
1 Distraction Screws 18 mm
2 Cushing Elevator 7 1/2" curved 15 mm sharp
2 Cobb Elevator 9 1/2" hex handle 1/2"
2 Lewin Bone Forceps 7"
1 Lambotte Osteotome 9" straight 1/4"
1 Lambotte Osteotome 9" straight 1/2"
1 Lambotte Osteotome 9" straight 3/4"
1 Lambotte Osteotome 9" straight 1"
1 Lambotte Osteotome 9" straight 1 1/2"
1 Lambotte Osteotome 9" curved 1/4"
2 Lambotte Osteotome 9" curved 1/2"
1 Lambotte Osteotome 9" curved 3/4"
2 Hibbs Gouge 9" straight 1/4"
2 Hibbs Gouge 9" curved 1/4"
1 Bone Tamp 6 1/2" 10 mm cross-serrated end

\section*{Bone - Holding, Small}
\begin{tabular}{lrl} 
part number & qty & description \\
gS 46.1620 & 2 & Kern Bone Forceps \(51 / 2^{\prime \prime}\) with ratchet \\
gS 46.1640 & 2 & Kern Bone Forceps \(91 / 2^{\prime \prime}\) with ratchet \\
gS 46.1900 & 1 & Verbrugge Forceps 6" self-centering speedlock \\
gS 46.1920 & 1 & Verbrugge Forceps \(71 / 2^{\prime \prime}\) self-centering \\
gS 46.2210 & 1 & Verbrugge Forceps 7" with ratchet \\
gS 46.2280 & 1 & Bone Reduction Forceps 6" small curved \\
gS 46.2300 & 2 & Lewin Bone Forceps 7" \\
gS 46.2340 & 1 & Bone Reduction Forceps 8" long ratchet \\
gS 46.2407 & 1 & Bone Holding Forceps 7" with speedlock \\
gS 46.2520 & 2 & Lowman Bone Clamp 5" \(1 \times 2\) \\
gS 46.2540 & 2 & Lowman Bone Clamp 7 1/4" \(1 \times 2\) \\
gS 46.4000 & 1 & Bone Reduction Forceps \(5 "\)
\end{tabular}

\section*{Bone - Holding, Large}
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 46.1815 & 2 & Lane Bone Forceps 13" light with ratchet \\
\hline gS 46.1940 & 1 & Verbrugge Forceps 9 1/2" self-centering \\
\hline gS 46.1960 & 1 & Verbrugge Forceps 10" self-centering \\
\hline gS 46.1980 & 1 & Verbrugge Forceps 11" self-centering \\
\hline gS 46.2120 & 1 & Ulrich Bone Forceps straight 9 1/2" \\
\hline gS 46.2220 & 1 & Verbrugge Forceps 10" with ratchet \\
\hline gS 46.2240 & 1 & Verbrugge Forceps 10 1/2" with long ratchet \\
\hline gS 46.2260 & 1 & Verbrugge Forceps 11" with long ratchet \\
\hline gS 46.2300 & 2 & Lewin Bone Forceps 7" \\
\hline gS 46.2409 & 1 & Bone Holding Forceps 9" with speedlock \\
\hline gS 46.2560 & 2 & Lowman Bone Clamp 8" 1x2 \\
\hline gS 46.4685 & 2 & Lambert-Lowman Bone Clamp 8" \(2 \times 2\) jaws 2 1/2" cap \\
\hline
\end{tabular}

\section*{101/4- instrument sets}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Bone - Small} \\
\hline part number & qty & description \\
\hline gS 36.9300 & 2 & Hohmann Retractor Mini \(61 / 2{ }^{\prime \prime} 6 \mathrm{~mm}\) \\
\hline gS 36.9320 & 2 & Hohmann Retractor Mini \(61 / 2^{\prime \prime} 8 \mathrm{~mm}\) \\
\hline gS 36.9365 & 2 & Hohmann Retractor \(81 / 2^{\prime \prime} \times 8 \mathrm{~mm}\) rounded end 2 holes \\
\hline gS 36.9382 & 2 & Hohmann Retractor 9 1/2" \(\times 18 \mathrm{~mm}\) round end 2 holes \\
\hline gS 43.3060 & 1 & Periosteal Elevator \(71 / 4\) " curved 3 mm straight sharp edge phenolic handle \\
\hline gS 43.3070 & 1 & Periosteal Elevator \(71 / 4\) " curved 6 mm straight sharp edge phenolic handle \\
\hline gS 45.4420 & 1 & Bone Hook 9" small 10 mm sharp \\
\hline gS 46.1900 & 1 & Verbrugge Forceps 6" self-centering speedlock \\
\hline gS 46.1920 & 1 & Verbrugge Forceps \(71 / 2\) " self-centering speedlock \\
\hline gS 46.2280 & 1 & Bone Reduction Forceps 6" small curved \\
\hline gS 63.5100 & 1 & Liston Bone Forceps 5 1/2" angled \\
\hline gS 66.6256 & 1 & Ruskin Rongeur 6" curved 3mm double action \\
\hline gS 66.6270 & 1 & Ruskin Rongeur 7 1/2" curved 4mm double action \\
\hline gS 74.7920 & 1 & Ruler Flexible 6" inch/mm graduations \\
\hline \multicolumn{3}{|l|}{Bone - Large} \\
\hline part number & qty & description \\
\hline gS 36.9365 & 2 & Hohmann Retractor \(81 / 2^{\prime \prime} \times 8 \mathrm{~mm}\) rounded end 2 holes \\
\hline gS 36.9382 & 2 & Hohmann Retractor \(91 / 2^{\prime \prime} \times 18 \mathrm{~mm}\) round end 2 holes \\
\hline gS 36.9482 & 2 & Hohmann Retractor 10 1/2" \(\times 22 \mathrm{~mm}\) rounded end 3 holes \\
\hline gS 36.9505 & 2 & Hohmann Retractor 10 1/2" \(\times 70 \mathrm{~mm}\) round end 2 holes \\
\hline gS 36.9800 & 1 & Bennett Retractor 10" x \(13 / 4\) " \\
\hline gS 36.9840 & 1 & Bennett Retractor 10" x 2 1/2" \\
\hline gS 36.9920 & 2 & Murphy Bone Skid 12" \\
\hline gS 37.3040 & 2 & Blount Retractor 10 1/2" 2 prongs 44mm \\
\hline gS 43.3120 & 1 & Periosteal Elevator 7 1/4" curved 6 mm sharp edge phenolic handle \\
\hline gS 43.3140 & 1 & Periosteal Elevator \(71 / 4\) " angled 14mm curved sharp edge phenolic handle \\
\hline gS 43.3150 & 1 & Periosteal Elevator \(71 / 4\) " straight 13 mm straight sharp edge phenolic handle \\
\hline gS 45.4430 & 1 & Bone Hook 9" medium 19mm sharp \\
\hline gS 45.4440 & 1 & Bone Hook 9" large 25 mm sharp \\
\hline gS 46.1940 & 1 & Verbrugge Forceps \(91 / 2^{\prime \prime}\) self-centering \\
\hline gS 46.1960 & 1 & Verbrugge Forceps 10" self-centering \\
\hline gS 46.1980 & 1 & Verbrugge Forceps 11" self-centering \\
\hline gS 46.2407 & 1 & Bone Holding Forceps 7" with speedlock \\
\hline gS 46.2409 & 1 & Bone Holding Forceps 9" with speedlock \\
\hline gS 52.0101 & 1 & Interchangeable Key 3 1/4" 3.0mm hex \\
\hline gS 52.0105 & 1 & Interchangeable Chisel Blade 5mm straight \\
\hline gS 52.0106 & 1 & Interchangeable Chisel Blade 10mm straight \\
\hline gS 52.0107 & 1 & Interchangeable Chisel Blade 16mm straight \\
\hline gS 52.0108 & 1 & Interchangeable Chisel Blade 25mm straight \\
\hline gS 52.0110 & 1 & Interchangeable Osteotome Blade 5mm straight \\
\hline gS 52.0111 & 1 & Interchangeable Osteotome Blade 10mm straight \\
\hline gS 52.0112 & 1 & Interchangeable Osteotome Blade 16mm straight \\
\hline gS 52.0113 & 1 & Interchangeable Osteotome Blade 25mm straight \\
\hline gS 52.0160 & 1 & Interchangeable Gouge Blade 60 mm radius \\
\hline gS 63.4660 & 1 & Stille-Liston Forceps 11" straight double action \\
\hline gS 63.6380 & 1 & Ruskin Liston Forceps 7 1/2" straight double action \\
\hline gS 66.5580 & 1 & Stille-Luer Rongeur \(81 / 2^{\prime \prime}\) straight 10 mm double action \\
\hline gS 66.6200 & 1 & Beyer Rongeur 7" curved 3mm double action \\
\hline gS 66.6270 & 1 & Ruskin Rongeur \(71 / 2^{\prime \prime}\) curved 4mm double action \\
\hline gS 74.7940 & 1 & Ruler Flexible 8" inch/mm graduations \\
\hline
\end{tabular}

\section*{Forefoot}
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 12.1580 & 3 & Scalpel Handle \#3 standard 5" \\
\hline gS 13.3580 & 1 & Mayo Scissors \(51 / 2^{\prime \prime}\) curved beveled \\
\hline gS 13.4023 & 1 & Operating Scissors \(51 / 2^{\prime \prime}\) straight blunt/blunt \\
\hline gS 13.5620 & 1 & Metzenbaum Scissors 5 3/4" curved \\
\hline gS 17.1630 & 1 & Adson Forceps 4 3/4" serrated 1x2 teeth 1.3 mm \\
\hline gS 17.1929 & 2 & Adson Brown Forceps 4 3/4" 9x9 teeth \\
\hline gS 17.2120 & 2 & Allis Tissue Forceps 6" \(4 \times 5\) teeth \\
\hline gS 17.5060 & 1 & Kocher Forceps \(51 / 2\) " straight serrated \(1 \times 2\) teeth \\
\hline gS 19.1600 & 1 & Adson Dressing Forceps 4 3/4" serrated delicate \\
\hline gS 20.4660 & 1 & Foerster Forceps 7" straight serrated \\
\hline gS 20.5620 & 4 & Backhaus Towel Forceps 5 1/4" \\
\hline gS 21.2700 & 1 & Crile-Wood Needle Holder 6" serrated \\
\hline gS 21.3780 & 1 & Mayo Hegar Needle Holder 7" serrated \\
\hline gS 22.2560 & 4 & Mosquito Forceps 5" straight (Halsted) \\
\hline gS 22.2580 & 8 & Mosquito Forceps 5" curved (Halsted) \\
\hline gS 22.2660 & 1 & Kelly Forceps 5 1/2" straight \\
\hline gS 22.2680 & 1 & Kelly Forceps \(51 / 2\) " curved \\
\hline gS 22.2760 & 1 & Crile Forceps \(51 / 2^{\prime \prime}\) straight \\
\hline gS 22.2780 & 1 & Crile Forceps \(51 / 2 "\) curved \\
\hline gS 25.1880 & 2 & Joseph Hook 6 1/4" 1 prong sharp \\
\hline gS 25.1920 & 2 & Joseph Hook 6 1/4" 2 prongs sharp 5mm \\
\hline gS 34.1845 & 2 & Senn Retractor \(61 / 4\) " 3 prongs sharp \\
\hline gS 34.1940 & 2 & Ragnell Retractor 5 3/4" double ended \\
\hline gS 36.9320 & 2 & Hohmann Retractor Mini \(61 / 2\) " 8mm \\
\hline gS 38.5170 & 1 & Self Retaining Retractor 4" sharp \\
\hline gS 38.5300 & 2 & Schink Retractor 4 1/2" \\
\hline gS 38.5920 & 1 & Weitlaner Retractor 4 1/2" sharp \(2 \times 3\) \\
\hline gS 42.1760 & 1 & Sayre Elevator \(61 / 2\) " \(5 \mathrm{~mm} / 9 \mathrm{~mm}\) blunt/blunt \\
\hline gS 42.7140 & 1 & Freer Elevator 7 1/2" double ended 5mm sharp/blunt \\
\hline gS 43.3580 & 1 & Key Elevator 7" width 1/4" \\
\hline gS 43.3620 & 1 & Key Elevator 7 1/2" width 1/2" \\
\hline gS 46.8870 & 1 & Locke Phalangeal Forceps 6" \\
\hline gS 52.0400 & 1 & Long Bevel Osteotome 7" straight 10mm calibrated \\
\hline gS 52.0460 & 1 & Long Bevel Osteotome 7" straight 20mm calibrated \\
\hline gS 52.0500 & 1 & Long Bevel Osteotome 7" straight 25 mm calibrated \\
\hline gS 52.0700 & 1 & Long Bevel Osteotome 7" curved 5mm calibrated \\
\hline gS 52.0750 & 1 & Long Bevel Osteotome 7" curved 10 mm calibrated \\
\hline gS 59.7600 & 1 & Lucae Mallet 8" 8oz [227g] head s/s convex/flat \(\varnothing 25 \mathrm{~mm}\) s/s handle \\
\hline gS 61.6380 & 1 & Nail Rasp \#93 double ended 6 3/4" 2 mm angled up/down \\
\hline gS 61.6440 & 1 & Bone File \#12A double ended 7" 5mm straight plain/cross serrations \\
\hline gS 61.6477 & 1 & Bone Rasp double ended \(81 / 2\) " 13 mm straight fine/coarse serrations \\
\hline gS 62.1710 & 1 & Joseph Rasp \(61 / 4 " 8 \mathrm{~mm}\) straight fine cross serrations \\
\hline gS 63.6570 & 1 & Ruskin Liston Forceps 6" straight double action \\
\hline gS 65.3380 & 1 & Plug Cutter \(41 / 2^{\prime \prime}\) with obturator \(3 \mathrm{~mm} / 5 \mathrm{~mm}\) \\
\hline gS 66.3660 & 1 & Blumenthal Rongeur 6" 30 degrees 3mm single action \\
\hline gS 66.6200 & 1 & Beyer Rongeur 7" curved 3mm double action \\
\hline gS 74.7980 & 1 & Ruler Flexible 12" inch/mm graduations \\
\hline gS 81.6720 & 1 & Wire Extraction Pliers 7" double action 2mm TC \\
\hline gS 82.0100 & 1 & Vickers Manual K-Wire Driver 5 1/2" \\
\hline gS 83.2980 & 1 & Wire Cutting Scissors \(43 / 4\) " angled with notch \\
\hline gS 83.7310 & 1 & Flush Front \& Side Wire Cutter double action 7" TC max cap 1.6mm [.062"] \\
\hline gS 98.5210 & 1 & Four Chambered K-Wire Dispenser for 4" wires 0.9-1.6mm diameter \\
\hline gS 99.0100 & 1 & Steel brush with Plastic handle \\
\hline
\end{tabular}

\section*{101/6- instrument sets}

\section*{Fragment - Mini}
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 11.9500 & 1 & Sharp Hook 6" \\
\hline gS 36.9300 & 1 & Hohmann Retractor Mini \(61 / 2\) " 6 mm \\
\hline gS 36.9320 & 1 & Hohmann Retractor Mini \(61 / 2^{\prime \prime} 8 \mathrm{~mm}\) \\
\hline gS 43.3060 & 1 & Periosteal Elevator 7 1/4" curved 3mm straight sharp edge phenolic handle \\
\hline gS 46.2190 & 1 & Stagbeetle Forceps 4 3/4" \\
\hline gS 46.2330 & 1 & Bone Reduction Forceps 5" curved 10 mm serrated with pointed tips \\
\hline gS 46.2350 & 1 & Bone Reduction Forceps 5" curved 15 mm serrated with pointed tips \\
\hline gS 81.3214 & 1 & Needle Nose Pliers \(51 / 4\) " delicate with guide \\
\hline gS 82.0172 & 1 & Mini Bending Iron \(43 / 4\) " for \(1.5 \mathrm{~mm} / 2.0 \mathrm{~mm}\) plates \\
\hline gS 82.0174 & 1 & Small Bending Iron \(51 / 2^{\prime \prime}\) for \(2.7 \mathrm{~mm} / 3.5 \mathrm{~mm}\) plates \\
\hline gS 82.0176 & 1 & Small Bending Iron \(51 / 2^{\prime \prime}\) for \(3.5 \mathrm{~mm} / 2.7 \mathrm{~mm}\) plates \\
\hline gS 82.0980 & 2 & Plate Bending Pliers \(51 / 2^{\prime \prime}\) max 2.0 mm plates \\
\hline gS 83.7230 & 1 & Wire Cutter double action 7" angled TC max cap 1.6mm [.062"] \\
\hline gS 83.9000 & 1 & Plate/Pin Cutter double action 9 1/2", max cap 3.2mm [.126"] \\
\hline gS 86.0035 & 1 & Handle 4 1/4" MQC (mini quick coupling) \\
\hline gS 86.0040 & 1 & Handle 4 1/2" SQC (small quick coupling) \\
\hline gS 86.1004 & 1 & Countersink 2 1/4" 1.5/2.0mm MQC (mini quick coupling) 1.1mm tip \\
\hline gS 86.1006 & 1 & Countersink 2 3/4" 2.7/3.5/4.0mm SQC (small quick coupling) 2.0mm tip \\
\hline gS 86.1200 & 2 & Tap 2" 1.5 mm MQC (mini quick coupling) 0.5 mm pitch \\
\hline gS 86.1202 & 2 & Tap 2 1/4" 2.0mm MQC (mini quick coupling) 0.6 mm pitch \\
\hline gS 86.1204 & 2 & Tap 4" 2.7 mm SQC (small quick coupling) 1.0 mm pitch \\
\hline gS 86.1502 & 1 & Screwdriver Bit hex 2" 1.5mm MQC (mini quick coupling) \\
\hline gS 86.1506 & 1 & Screwdriver Bit hex 4" 2.5 mm SQC (small quick coupling) \\
\hline gS 86.2405 & 1 & Depth Gauge 4 3/4" 30mm \\
\hline gS 86.2410 & 1 & Depth Gauge \(61 / 2^{\prime \prime} 50 \mathrm{~mm}\) \\
\hline gS 86.2500 & 1 & Drill Sleeve Double 4 3/4" 1.1/1.5mm \\
\hline gS 86.2502 & 1 & Drill Sleeve Double 4 3/4" 2.0/1.5mm \\
\hline gS 86.2503 & 1 & Drill Sleeve Double 5" 2.7/2.0mm \\
\hline gS 86.4371 & 1 & Holding Sleeve \(11 / 2^{\prime \prime}\) for mini cruciform and hex shafts \\
\hline gS 86.4373 & 1 & Holding Sleeve 2" Split for small hex driver \\
\hline gS 86.4490 & 1 & Screwdriver \(81 / 2^{\prime \prime}\) hex 2.5 mm with notch black plastic handle \\
\hline gS 86.6108 & 1 & Screw Holding Forceps 3 1/2" for 1.5 mm - 2.7 mm \\
\hline gS 86.8211 & 2 & Drill Bit SQC (small quick coupling) \(1.1 \mathrm{~mm} \mathrm{60/13mm}\) \\
\hline gS 86.8215 & 2 & Drill Bit SQC (small quick coupling) \(1.5 \mathrm{~mm} 85 / 18 \mathrm{~mm}\) \\
\hline gS 86.8220 & 2 & Drill Bit SQC (small quick coupling) 2.0 mm 100/22mm \\
\hline gS 86.8227 & 2 & Drill Bit SQC (small quick coupling) 2.7 mm 100/29mm \\
\hline \multicolumn{3}{|l|}{optional} \\
\hline gS 36.9270 & 1 & Hohmann Retractor 6" 15mm \\
\hline gS 43.3120 & 1 & Periosteal Elevator 7 1/4" curved 6mm sharp edge phenolic handle \\
\hline gS 46.2370 & 1 & Bone Reduction Forceps 5" curved stepped pointed \\
\hline gS 46.2390 & 1 & Plate and Bone Holding Forceps 5" with footplate \\
\hline gS 46.2395 & 1 & Plate Holding Forceps \(51 / 2^{\prime \prime}\) curved \\
\hline gS 82.2016 & 1 & Gratloch Wire Bender 7 1/2" max cap 1.6mm [.062"] \\
\hline gS 86.1504 & 1 & Screwdriver Bit cruciform 2 1/2" MQC (mini quick coupling) \\
\hline
\end{tabular}

Instruments for mini fragment fixation
\(1.5 \mathrm{~mm}, 2.0 \mathrm{~mm}\) and 2.7 mm screws
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Fragment - Small} \\
\hline part number & qty & description \\
\hline gS 11.9500 & 1 & Sharp Hook 6" \\
\hline gS 36.9270 & 2 & Hohmann Retractor 6" 15mm \\
\hline gS 36.9320 & 2 & Hohmann Retractor Mini 6 1/2" 8mm \\
\hline gS 43.3120 & 1 & Periosteal Elevator 7 1/4" curved 6 mm sharp edge phenolic handle \\
\hline gS 46.1920 & 1 & Verbrugge Forceps \(71 / 2\) " [19cm] self-centering \\
\hline gS 46.2280 & 1 & Bone Reduction Forceps 6" small curved \\
\hline gS 46.2330 & 1 & Bone Reduction Forceps 5" curved 10 mm serrated with pointed tips \\
\hline gS 46.2350 & 1 & Bone Reduction Forceps 5" curved 15mm serrated with pointed tips \\
\hline gS 81.3214 & 1 & Needle Nose Pliers 5 1/4" delicate with guide \\
\hline gS 82.0174 & 1 & Small Bending Iron \(51 / 2\) " for \(2.7 \mathrm{~mm} / 3.5 \mathrm{~mm}\) plates \\
\hline gS 82.0176 & 1 & Small Bending Iron \(51 / 2\) " for \(3.5 \mathrm{~mm} / 2.7 \mathrm{~mm}\) plates \\
\hline gS 82.0182 & 2 & Bending Iron \(73 / 4\) " for \(3.5 \mathrm{~mm} / 4.5 \mathrm{~mm}\) plates \\
\hline gS 82.4760 & 1 & Wire and Pin Bender 6" max cap 3.2mm [.126"] \\
\hline gS 86.0045 & 1 & T-Handle 3 1/2" for small/large screw sets SQC (small quick coupling) \\
\hline gS 86.1002 & 1 & Adaptor 2 1/2" for power drill SQC (small quick coupling) \\
\hline gS 86.1006 & 1 & Countersink 2 3/4" 2.7/3.5/4.0mm SQC (small quick coupling) 2.0mm tip \\
\hline gS 86.1206 & 2 & Tap \(41 / 4\) " 3.5 mm SQC (small quick coupling) 1.25 mm pitch TiN coated \\
\hline gS 86.1208 & 2 & Tap \(41 / 4\) " 3.5 mm SQC (small quick coupling) 1.75 mm pitch \\
\hline gS 86.1510 & 1 & Screwdriver Bit hex \(51 / 2\) " 2.5 mm SQC (small quick coupling) with notch \\
\hline gS 86.2410 & 1 & Depth Gauge 50mm \\
\hline gS 86.2504 & 1 & Drill Sleeve Double 5" \(2.5 / 3.5 \mathrm{~mm}\) \\
\hline gS 86.2507 & 1 & Drill Guide/Sleeve \(41 / 2^{\prime \prime}\) Parallel 3:1 2.7 mm screw/2.0mm drill bit \\
\hline gS 86.2510 & 1 & Insert Drill Sleeve \(11 / 2\) " 3.5 mm screw/2.5mm drill bit \\
\hline gS 86.2584 & 1 & Drill Guide 6" Neutral/Load 3.5 mm screw/ 2.5 mm drill bit \\
\hline gS 86.2735 & 1 & Universal Drill Guide \(51 / 2\) " 3.5 mm screw/ 2.5 mm drill bit \\
\hline gS 86.4375 & 1 & Holding Sleeve 3" for small hex driver \\
\hline gS 86.4490 & 1 & Screwdriver \(81 / 2 \mathrm{l}\) hex 2.5 mm with notch black plastic handle \\
\hline gS 86.6110 & 1 & Screw Holding Forceps \(31 / 2\) ' for \(3.5 \mathrm{~mm}-6.5 \mathrm{~mm}\) \\
\hline gS 86.8226 & 2 & Drill Bit SQC (small quick coupling) \(2.5 \mathrm{~mm} 110 / 32 \mathrm{~mm}\) \\
\hline gS 86.8235 & 2 & Drill Bit SQC (small quick coupling) 3.5 mm 110/42mm \\
\hline \multicolumn{3}{|l|}{optional} \\
\hline gS 36.9300 & 1 & Hohmann Retractor Mini 6 1/2" 6 mm \\
\hline gS 46.1900 & 1 & Verbrugge Forceps 6" [15cm] self-centering speedlock \\
\hline gS 46.2370 & 1 & Bone Reduction Forceps 5" curved stepped pointed \\
\hline gS 82.0315 & 1 & Plate Bending Pliers \(81 / 2^{\prime \prime}\) for 1.6 mm plates \\
\hline gS 82.2016 & 1 & Gratloch Wire Bender 7 1/2" max cap 1.6mm [.062"] \\
\hline gS 83.7240 & 1 & Wire Cutter double action 9" angled TC max cap 2.4mm [.079"] \\
\hline gS 83.7320 & 1 & Pin Cutter double action 10" end cut max cap 3.0mm [.118"] \\
\hline gS 86.0040 & 1 & Handle \(41 / 2\) SQC (small quick coupling) \\
\hline gS 86.1506 & 1 & Screwdriver Bit hex 4" 2.5 mm SQC (small quick coupling) \\
\hline gS 86.4373 & 1 & Holding Sleeve 2" Split for small hex driver \\
\hline
\end{tabular}

Instruments for small fragment fixation
3.5 mm and 4.0 mm screws

\section*{101/8- instrument sets}

Fragment - Large
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 11.9500 & 1 & Sharp Hook 6" \\
\hline gS 46.1940 & 1 & Verbrugge Forceps \(91 / 2\) " [24cm] self-centering \\
\hline gS 46.1980 & 1 & Verbrugge Forceps 11" [28cm] self-centering \\
\hline gS 46.2340 & 1 & Bone Reduction Forceps 8" long ratchet \\
\hline gS 46.2409 & 2 & Bone Holding Forceps 9" with speedlock \\
\hline gS 86.0045 & 1 & T-Handle 3 1/2" for small/large screw sets SQC (small quick coupling) \\
\hline gS 86.1020 & 1 & Countersink 7" \(4.5 / 6.5 \mathrm{~mm}\) T-handle 4.3 mm tip \\
\hline gS 86.1212 & 3 & Tap 5 " 4.5 mm SQC (small quick coupling) 2.0 mm pitch \\
\hline gS 86.1220 & 1 & Tap 8" 6.5 mm SQC (small quick coupling) calibrated mm 2.7 mm pitch \\
\hline gS 86.1521 & 1 & Screwdriver Bit hex \(61 / 2\) " 3.5 mm SQC (small quick coupling) \\
\hline gS 86.2420 & 1 & Depth Gauge 11 1/2" 120mm \\
\hline gS 86.2505 & 1 & Drill Sleeve Double 7" 4.5/3.2mm \\
\hline gS 86.2506 & 1 & Drill Sleeve Double 6 1/2" \(6.5 / 3.2 \mathrm{~mm}\) \\
\hline gS 86.2515 & 1 & Insert Drill Sleeve \(31 / 8\) " 4.5 mm screw/3.2mm drill bit \\
\hline gS 86.2586 & 1 & Drill Guide \(61 / 2\) " Neutral/Load 4.5 mm screw/3.2mm drill bit \\
\hline gS 86.2745 & 1 & Universal Drill Guide 7" 4.5 mm screw/3.2mm drill bit \\
\hline gS 86.4380 & 1 & Holding Sleeve 5" for large hex driver \\
\hline gS 86.4590 & 1 & Screwdriver 10" hex 3.5 mm with notch black plastic handle \\
\hline gS 86.6110 & 1 & Screw Holding Forceps \(31 / 2^{\prime \prime}\) for \(3.5 \mathrm{~mm}-6.5 \mathrm{~mm}\) \\
\hline gS 86.7220 & 1 & Tension Device \(31 / 2^{\prime \prime}\) span 20mm articulated \\
\hline gS 86.8220 & 2 & Drill Bit SQC (small quick coupling) 2.0mm 100/22mm \\
\hline gS 86.8232 & 3 & Drill Bit SQC (small quick coupling) \(3.2 \mathrm{~mm} \mathrm{145/48mm}\) \\
\hline gS 86.8245 & 2 & Drill Bit SQC (small quick coupling) 4.5 mm 145/50mm \\
\hline gS 87.0012 & 1 & Combination Wrench \(51 / 2\) " 11 mm \\
\hline gS 87.0014 & 1 & Socket Wrench 7" 11 mm stainless \\
\hline \multicolumn{3}{|l|}{optional} \\
\hline gS 46.1960 & 1 & Verbrugge Forceps 10" [26cm] self-centering \\
\hline gS 46.2370 & 1 & Bone Reduction Forceps 5" curved stepped pointed \\
\hline gS 46.2407 & 1 & Bone Holding Forceps 7" with speedlock \\
\hline gS 86.1519 & 1 & Screwdriver Bit hex 4" 3.5 mm SQC (small quick coupling) \\
\hline gS 86.2415 & 1 & Depth Gauge 9 1/2" 100mm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Hand} \\
\hline part number & qty & description \\
\hline gS 11.1900 & 1 & Lead Hand Adult 14" with tabs \\
\hline gS 11.1920 & 1 & Lead Hand Child 10" with tabs \\
\hline gS 12.1580 & 2 & Scalpel Handle \#3 standard 5" \\
\hline gS 13.3975 & 1 & Mayo Scissors 6 3/4" straight TC \\
\hline gS 15.9299 & 1 & Utility Scissors \(51 / 2\) " black plastic handle \\
\hline gS 16.4820 & 1 & Super-Cut Metzenbaum Scissors \(51 / 2\) " curved \\
\hline gS 16.4940 & 1 & Super-Cut Metzenbaum Scissors 7" curved \\
\hline gS 16.5440 & 1 & Super-Cut Iris Scissors 4 1/2" straight \\
\hline gS 16.5600 & 1 & Super-Cut Iris Scissors \(41 / 2^{\prime \prime}\) curved \\
\hline gS 17.1640 & 1 & Adson Forceps 4 3/4" \(1 \times 2\) teeth delicate 0.9 mm \\
\hline gS 17.1929 & 1 & Adson Brown Forceps 4 3/4" 9x9 teeth \\
\hline gS 17.2050 & 2 & Allis Tissue Forceps \(43 / 4\) " \(4 \times 5\) teeth \\
\hline gS 17.3760 & 1 & Tissue Forceps 6" \(1 \times 2\) teeth \\
\hline gS 17.5060 & 2 & Kocher Forceps \(51 / 2^{\prime \prime}\) straight serrated 1x2 teeth \\
\hline gS 19.1620 & 1 & Adson Dressing Forceps 4 3/4" serrated standard \\
\hline gS 20.4860 & 2 & Foerster Forceps 9 1/2" straight serrated \\
\hline gS 20.5580 & 4 & Backhaus Towel Forceps 3 1/2" \\
\hline gS 21.1670 & 2 & Halsey Needle Holder 5" serrated TC \\
\hline gS 21.2740 & 1 & Crile-Wood Needle Holder 6" serrated TC \\
\hline gS 22.1812 & 2 & Petit-Point Jacobson Mosquito Forceps 5" straight \\
\hline gS 22.1813 & 2 & Petit-Point Jacobson Mosquito Forceps 5" curved \\
\hline gS 22.2560 & 2 & Mosquito Forceps 5" straight (Halsted) \\
\hline gS 22.2580 & 2 & Mosquito Forceps 5" curved (Halsted) \\
\hline gS 22.4180 & 2 & Rochester Pean Forceps 16cm [6 1/4"] curved \\
\hline gS 22.6560 & 1 & Mixter Baby Forceps 7" curved part serrated \\
\hline gS 22.6570 & 1 & Mixter Forceps Petit-Point 5 1/4" full curved serrated \\
\hline gS 25.1880 & 2 & Joseph Hook 6 1/4" 1 prong sharp \\
\hline gS 25.1920 & 2 & Joseph Hook 6 1/4" 2 prongs sharp 5mm \\
\hline gS 27.5290 & 1 & Iris Forceps 4" straight 1x2 \\
\hline gS 34.1845 & 2 & Senn Retractor 6 1/4" 3 prongs sharp \\
\hline gS 34.2240 & 2 & Meyerding Finger Retractor 7" \#4 \\
\hline gS 36.9300 & 2 & Hohmann Retractor Mini \(61 / 2 \mathrm{Cmm}\) \\
\hline gS 38.5940 & 1 & Weitlaner Retractor 4 1/2" blunt \(2 \times 3\) \\
\hline gS 38.8760 & 1 & Gelpi Retractor 3 1/2" sharp \\
\hline gS 43.3010 & 1 & Joseph Raspatory 6 3/4" slight curved 3mm sharp \\
\hline gS 49.8400 & 1 & Carroll Tendon Pulling Forceps 4 1/2" curved \\
\hline gS 52.4355 & 1 & Mini Lambotte Osteotome 5" straight 2mm \\
\hline gS 52.4360 & 1 & Mini Lambotte Osteotome 5" straight 4mm \\
\hline gS 52.4380 & 1 & Mini Lambotte Osteotome 5" straight 6 mm \\
\hline gS 52.4400 & 1 & Mini Lambotte Osteotome 5" straight 8mm \\
\hline gS 52.4420 & 1 & Mini Lambotte Osteotome 5" straight 10mm \\
\hline gS 52.4430 & 1 & Mini Lambotte Osteotome 5" straight 14mm \\
\hline gS 52.4440 & 1 & Mini Lambotte Osteotome 5" straight 12mm \\
\hline gS 59.7620 & 1 & Nylon Mallet \(71 / 2\) " 7oz [198g] head s/s \(\varnothing 25 \mathrm{~mm}\) aluminum handle \\
\hline gS 62.1500 & 1 & Aufricht Rasp 8" 9mm curved upcutting serrations \\
\hline gS 63.6570 & 1 & Ruskin Liston Forceps 6" straight double action \\
\hline gS 66.6600 & 1 & Kleinert-Kutz Rongeur 6" slight curved 2 mm double action \\
\hline gS 74.1000 & 1 & Castroviejo Caliper 3 1/2" straight 0-20mm \\
\hline gS 74.7920 & 1 & Ruler Flexible 6" inch/mm graduations \\
\hline gS 75.9250 & 1 & Frazier Suction Tube 7" 8 french 30 degrees 85mm working length \\
\hline gS 83.7510 & 1 & Diamond Pin Cutter 6 1/2" max cap 2.0mm [.079"] \\
\hline gS 98.2108 & 1 & Instrument Stringer with lock 8" x 2 1/2" \\
\hline
\end{tabular}

\author{
Hip - Basic, Total
}
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 12.1600 & 2 & Scalpel Handle \#4 standard 5 1/4" \\
\hline gS 12.1620 & 1 & Scalpel Handle \#7 length \(61 / 2^{\prime \prime}\) \\
\hline gS 16.3920 & 2 & Super-Cut Mayo Scissors 6 3/4" straight \\
\hline gS 16.3980 & 1 & Super-Cut Mayo Scissors 6 3/4" curved \\
\hline gS 16.4220 & 1 & Super-Cut Mayo Scissors 9" curved \\
\hline gS 16.4940 & 1 & Super-Cut Metzenbaum Scissors 7" curved \\
\hline gS 16.5020 & 1 & Super-Cut Metzenbaum Scissors 8" curved \\
\hline gS 17.1640 & 2 & Adson Forceps 4 3/4" 1x2 teeth delicate 0.9mm \\
\hline gS 17.2240 & 2 & Allis Tissue Forceps \(71 / 2\) " \(5 \times 6\) teeth \\
\hline gS 17.2960 & 2 & Russian Tissue Forceps 8" \\
\hline gS 17.3720 & 2 & Tissue Forceps \(51 / 2^{\prime \prime} 1 \times 2\) teeth \\
\hline gS 17.4040 & 2 & Tissue Forceps \(51 / 2\) " \(3 \times 4\) teeth \\
\hline gS 17.5360 & 2 & Rochester Ochsner Forceps 20cm [8"] straight 1x2 \\
\hline gS 20.4860 & 2 & Foerster Forceps 9 1/2" straight serrated \\
\hline gS 20.5580 & 6 & Backhaus Towel Forceps 3 1/2" \\
\hline gS 20.5620 & 2 & Backhaus Towel Forceps \(51 / 4\) " \\
\hline gS 21.2750 & 2 & Crile-Wood Needle Holder 7" serrated TC \\
\hline gS 21.4140 & 2 & Mayo Hegar Needle Holder 8" serrated TC \\
\hline gS 22.2560 & 6 & Mosquito Forceps 5" straight (Halsted) \\
\hline gS 22.2880 & 6 & Rankin-Crile Forceps 6 1/4" curved \\
\hline gS 22.4380 & 2 & Rochester Pean Forceps 20cm [8"] curved \\
\hline gS 22.8460 & 4 & Adson Forceps 7 1/4" curved \\
\hline gS 36.1600 & 2 & Hibbs Retractor 9 1/2" 1 " \(\times 3\) " sharp \\
\hline gS 36.3120 & 1 & Richardson Eastman Retractor 9 1/2" small \\
\hline gS 36.3640 & 2 & Volkmann Retractor 8 1/2" 4 prongs sharp \\
\hline gS 36.3660 & 2 & Volkmann Retractor 8 1/2" 6 prongs sharp \\
\hline gS 36.9370 & 1 & Hohmann Retractor 9 1/2" \(\times 10 \mathrm{~mm}\) rounded end 2 holes \\
\hline gS 36.9482 & 1 & Hohmann Retractor \(101 / 2^{\prime \prime} \times 22 \mathrm{~mm}\) rounded end 3 holes \\
\hline gS 36.9505 & 1 & Hohmann Retr 10 1/2" \(\times 70 \mathrm{~mm}\) round end 2 holes \\
\hline gS 38.6020 & 2 & Weitlaner Retractor \(61 / 2^{\prime \prime}\) sharp 3x4 \\
\hline gS 38.8800 & 1 & Gelpi Retractor \(51 / 2\) " sharp \\
\hline gS 45.4430 & 1 & Bone Hook 9" medium 19mm sharp \\
\hline gS 45.4440 & 1 & Bone Hook 9" large 25mm sharp \\
\hline gS 52.4590 & 1 & Hibbs Osteotome \(91 / 2^{\prime \prime}\) straight 1/4" [6mm] \\
\hline gS 52.4600 & 1 & Hibbs Osteotome \(91 / 2^{\prime \prime}\) straight 3/8" [10mm] \\
\hline gS 52.4610 & 1 & Hibbs Osteotome \(91 / 2^{\prime \prime}\) straight 1/2" [13mm] \\
\hline gS 59.7660 & 1 & Ortho Mallet 11" 2lb 2 zz [964g] head s/s \(\varnothing 35 \mathrm{~mm} \mathrm{~s} / \mathrm{s}\) handle \\
\hline gS 62.7520 & 1 & Putti Bone Rasp double ended 12" round tapered \\
\hline gS 66.5600 & 1 & Stille-Luer Rongeur \(81 / 2\) " curved 10 mm double action \\
\hline gS 66.5720 & 1 & Stille-Luer Rongeur 9" angular 6mm double action \\
\hline gS 66.6200 & 1 & Beyer Rongeur 7" curved 3mm double action \\
\hline gS 74.7940 & 1 & Ruler Flexible 8" inch/mm graduations \\
\hline gS 75.3280 & 3 & Yankauer Suction Tube 11" double angled stainless \\
\hline
\end{tabular}

\section*{Joint - Basic, Total}
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 12.1590 & 2 & Scalpel Handle \#3S mm/cm scale 5" \\
\hline gS 12.1610 & 1 & Scalpel Handle \#3L long 8" \\
\hline gS 13.3975 & 2 & Mayo Scissors 6 3/4" straight TC \\
\hline gS 13.3976 & 1 & Mayo Scissors \(63 / 4\) " curved TC \\
\hline gS 13.7439 & 1 & Metzenbaum Scissors 7" curved TC \\
\hline gS 15.8040 & 1 & Lister Bandage Scissors 7 1/4" \\
\hline gS 17.1630 & 2 & Adson Forceps \(43 / 4\) " serrated \(1 \times 2\) teeth 1.3 mm \\
\hline gS 17.1929 & 2 & Adson Brown Forceps 4 3/4" 9x9 teeth \\
\hline gS 17.2070 & 2 & Allis Tissue Forceps \(51 / 2\) " \(4 \times 5\) teeth \\
\hline gS 17.4302 & 2 & Bonney Tissue Forceps 6 3/4" serrated 1x2 teeth \\
\hline gS 17.5360 & 4 & Rochester Ochsner Forceps 20cm [8"] straight 1x2 \\
\hline gS 19.1620 & 2 & Adson Dressing Forceps \(43 / 4\) " serrated standard \\
\hline gS 20.4860 & 2 & Foerster Forceps 9 1/2" straight serrated \\
\hline gS 20.5620 & 12 & Backhaus Towel Forceps 5 1/4" \\
\hline gS 21.4140 & 4 & Mayo Hegar Needle Holder 8" serrated TC \\
\hline gS 22.2693 & 6 & Coller Forceps 6 1/4" curved delicate \\
\hline gS 22.2714 & 2 & Gemini Forceps curved 9" \\
\hline gS 22.4180 & 4 & Rochester Pean Forceps 16cm [6 1/4"] curved \\
\hline gS 22.4380 & 4 & Rochester Pean Forceps 20cm [8"] curved \\
\hline gS 36.3000 & 2 & Richardson Retractor 9 1/2" 3/4" x 1" grip handle \\
\hline gS 36.3660 & 2 & Volkmann Retractor \(81 / 2\) " 6 prongs sharp \\
\hline gS 36.4720 & 2 & US Army Navy Retractor \(81 / 2\) set of 2 \\
\hline gS 36.9480 & 2 & Hohmann Retractor 10" x 22mm square end 2 holes \\
\hline gS 36.9800 & 2 & Bennett Retractor 10" x 1 3/4" \\
\hline gS 43.3620 & 1 & Key Elevator 7 1/2" width 1/2" \\
\hline gS 43.3660 & 1 & Key Elevator 8 1/2" width 1" \\
\hline gS 51.6520 & 1 & Brun Curette 9" hex handle straight oval \#2/0 \\
\hline gS 51.6540 & 1 & Brun Curette 9" hex handle straight oval \#1 \\
\hline gS 51.6560 & 1 & Brun Curette 9" hex handle straight oval \#3 \\
\hline gS 59.7890 & 1 & Heavy Mallet 10 1/2" 2lb 9oz [1,162g] head s/s \(\varnothing 45 \mathrm{~mm}\) phenolic handle \\
\hline gS 63.4660 & 1 & Stille-Liston Forceps 11" straight double action \\
\hline gS 66.5720 & 1 & Stille-Luer Rongeur 9" angular 6mm double action \\
\hline gS 81.6740 & 1 & Wire Extraction Pliers 7" double action 6mm TC \\
\hline gS 83.8400 & 1 & Wire Cutter 7" with silicone inserts max cap 1.6 mm [.062"] \\
\hline gS 98.2112 & 1 & Instrument Stringer with lock 12" \(\times 2\) 1/2" \\
\hline
\end{tabular}

\section*{101/12 - instrument sets}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Joint - Ortho, Small} \\
\hline part number & qty & description \\
\hline gS 12.1590 & 3 & Scalpel Handle \#3S mm/cm scale 5" \\
\hline gS 12.1605 & 1 & Scalpel Handle \#3K Beaver-style 4" \\
\hline gS 13.1842 & 1 & Iris Scissors \(41 / 2^{\prime \prime}\) straight TC \\
\hline gS 13.1844 & 1 & Iris Scissors \(41 / 2^{\prime \prime}\) curved TC \\
\hline gS 13.2644 & 1 & Strabismus Scissors 4" curved TC \\
\hline gS 13.2720 & 1 & Stevens Tenotomy Scissors 4 1/4" curved blunt/blunt \\
\hline gS 13.3012 & 1 & Littler Scissors 4 3/4" fine curved point with hole for suture \\
\hline gS 13.3975 & 1 & Mayo Scissors 6 3/4" straight TC \\
\hline gS 13.3976 & 1 & Mayo Scissors 6 3/4" curved TC \\
\hline gS 13.7433 & 1 & Metzenbaum Scissors 5 3/4" curved TC \\
\hline gS 13.7439 & 1 & Metzenbaum Scissors 7" curved TC \\
\hline gS 16.5960 & 1 & Super-Cut Jamison (Stevens) Scissors \(61 / 4\) " curved \\
\hline gS 17.1660 & 2 & Adson Forceps 4 3/4" \(1 \times 2\) teeth 1.3 mm \\
\hline gS 17.1920 & 2 & Adson Brown Forceps 4 3/4" \(7 \times 7\) teeth \\
\hline gS 17.2120 & 2 & Allis Tissue Forceps 6" \(4 \times 5\) teeth \\
\hline gS 17.3760 & 2 & Tissue Forceps 6" 1x2 teeth \\
\hline gS 17.5160 & 2 & Rochester Ochsner Forceps 16cm [6 1/4"] str 1x2 \\
\hline gS 19.1880 & 2 & Dressing Forceps 6" serrated \\
\hline gS 20.5580 & 4 & Backhaus Towel Forceps 3 1/2" \\
\hline gS 20.5620 & 2 & Backhaus Towel Forceps 5 1/4" \\
\hline gS 20.5680 & 4 & Lorna Towel Forceps (Edna) 5 1/4" \\
\hline gS 21.1714 & 1 & Webster Needle Holder 4 3/4" serrated TC \\
\hline gS 21.1940 & 1 & Derf Needle Holder 4 3/4" serrated TC \\
\hline gS 21.3640 & 2 & Ryder Needle Holder 6" serrated 2mm TC \\
\hline gS 21.4020 & 2 & Mayo Hegar Needle Holder 6" serrated TC \\
\hline gS 22.1730 & 2 & Micro Hartmann Forceps 4" curved \\
\hline gS 22.2580 & 2 & Mosquito Forceps 5" curved (Halsted) \\
\hline gS 22.2760 & 2 & Crile Forceps \(51 / 2^{\prime \prime}\) straight \\
\hline gS 22.2780 & 2 & Crile Forceps 5 1/2" curved \\
\hline gS 22.4180 & 2 & Rochester Pean Forceps 16cm [6 1/4"] curved \\
\hline gS 22.6550 & 1 & Mixter Baby Forceps 5" curved partially serrated \\
\hline gS 22.6560 & 1 & Mixter Baby Forceps 7" curved partially serrated \\
\hline gS 25.1880 & 2 & Joseph Hook 6 1/4" 1 prong sharp \\
\hline gS 25.1910 & 2 & Joseph Hook 6 1/4" 2 prongs sharp 2mm \\
\hline gS 25.1920 & 2 & Joseph Hook 6 1/4" 2 prongs sharp 5mm \\
\hline gS 25.1930 & 2 & Joseph Hook 6 1/4" 2 prongs sharp 7mm \\
\hline gS 25.1940 & 2 & Joseph Hook 6 1/4" 2 prongs sharp 10mm \\
\hline gS 34.1760 & 2 & Davis Retractor 6" double ended \\
\hline gS 34.1845 & 2 & Senn Retractor \(61 / 4\) " 3 prongs sharp \\
\hline gS 34.1855 & 2 & Senn Retractor \(61 / 4\) " 3 prongs blunt \\
\hline gS 34.1940 & 2 & Ragnell Retractor 5 3/4" double ended \\
\hline gS 36.4720 & 2 & US Army Navy Retractor \(81 / 2^{\prime \prime}\) set of 2 \\
\hline gS 36.8518 & 1 & Baby Ribbon Retractor 6" \(\times 1 / 4\) " malleable \\
\hline gS 36.8550 & 1 & Baby Ribbon Retractor 7 1/2" \(\times 1\) " malleable \\
\hline gS 36.8561 & 1 & Ribbon Retractor 8" \(\times 3 / 8\) " malleable \\
\hline gS 36.8563 & 1 & Ribbon Retractor 8 " \(\times 1 / 2^{\prime \prime}\) malleable \\
\hline gS 36.8564 & 1 & Ribbon Retractor 8" \(\times 5 / 8\) " malleable \\
\hline gS 36.9270 & 2 & Hohmann Retractor 6" 15mm \\
\hline gS 36.9300 & 2 & Hohmann Retractor Mini \(61 / 2\) " 6 mm \\
\hline gS 38.5140 & 2 & Alm Retractor 3" blunt \\
\hline gS 38.5920 & 2 & Weitlaner Retractor \(41 / 2^{\prime \prime}\) sharp \(2 \times 3\) \\
\hline gS 38.6020 & 2 & Weitlaner Retractor \(61 / 2\) s sharp \(3 \times 4\) \\
\hline gS 40.3170 & 1 & Inge Retractor \(61 / 2^{\prime \prime}\) with teeth \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Joint - Ortho, Small (continued)} \\
\hline part number & qty & description \\
\hline gS 42.5980 & 1 & Spatula and Packer 5 3/4" \#91 double ended \\
\hline gS 42.7140 & 1 & Freer Elevator 7 1/2" double ended 5mm sharp/blunt \\
\hline gS 42.7170 & 1 & Woodson Dura Separator and Packer with groove 7" double ended 3mm blunt \\
\hline gS 43.3575 & 1 & Key Elevator 7" width 1/8" \\
\hline gS 43.3580 & 1 & Key Elevator 7" width 1/4" \\
\hline gS 43.4220 & 1 & Cushing Elevator 7 1/2" curved 15mm sharp \\
\hline gS 45.4430 & 1 & Bone Hook 9" medium 19mm sharp \\
\hline gS 46.2280 & 1 & Bone Reduction Forceps 6" small curved \\
\hline gS 46.2342 & 1 & Bone Reduction Forceps 8" speed lock \\
\hline gS 46.2370 & 2 & Bone Reduction Forceps 5" curved stepped pointed \\
\hline gS 51.6130 & 1 & Brun Curette 7" hollow handle straight oval \#3/0 \\
\hline gS 51.6170 & 1 & Brun Curette 7" hollow handle straight oval \#0 \\
\hline gS 51.6210 & 1 & Brun Curette 7" hollow handle straight oval \#2 \\
\hline gS 52.4902 & 1 & Converse Osteotome 7" straight 2mm \\
\hline gS 52.4904 & 1 & Converse Osteotome 7" straight 4mm \\
\hline gS 52.4906 & 1 & Converse Osteotome 7" straight 6 mm \\
\hline gS 52.4908 & 1 & Converse Osteotome 7" straight 8mm \\
\hline gS 52.4910 & 1 & Converse Osteotome 7" straight 10mm \\
\hline gS 52.4912 & 1 & Converse Osteotome 7" straight 12mm \\
\hline gS 56.1500 & 1 & Alexander Gouge 7" straight 4mm \\
\hline gS 56.1510 & 1 & Alexander Gouge 7" straight 6 mm \\
\hline gS 56.1520 & 1 & Alexander Gouge 7" straight 8mm \\
\hline gS 59.7624 & 1 & Ortho Short Mallet 7" 1lb 2 oz [510g] head s/s \(\varnothing 30 \mathrm{~mm} \mathrm{~s} / \mathrm{s}\) handle \\
\hline gS 62.1665 & 1 & Maltz Rasp 7" 9mm straight downcutting serrations \\
\hline gS 62.7540 & 1 & Putti Bone Rasp double ended 10 1/2" 18mm flat taper to 4mm \\
\hline gS 63.4980 & 1 & Liston Bone Forceps \(51 / 2\) " straight \\
\hline gS 63.6380 & 1 & Ruskin Liston Forceps 7 1/2" straight double action \\
\hline gS 66.3772 & 1 & Luer Rongeur 6" full curved 3mm single action \\
\hline gS 66.5900 & 1 & Leksell-Stille Rongeur 9 1/2" curved 8mm double action \\
\hline gS 66.6620 & 1 & Kleinert-Kutz Rongeur 6 " curved 3mm double action \\
\hline gS 74.7800 & 1 & K-Wire Ruler and Pin Gauge 6" \\
\hline gS 75.9310 & 1 & Frazier Suction Tube \(91 / 2^{\prime \prime} 10\) french 75 degrees working length 170mm \\
\hline gS 81.3610 & 1 & Long Jaw Pliers 7" \\
\hline gS 82.4235 & 1 & Wire Twisting Forceps 6" TC 3mm rounded tip \\
\hline gS 83.3000 & 1 & Wire Cutting Scissors 4 3/4" angled with notch TC \\
\hline gS 83.7226 & 1 & Wire Cutter 7" TC max cap 1.6mm [.062"] \\
\hline gS 83.7310 & 1 & Flush Front \& Side Wire Cutter double action 7" TC max cap 1.6mm [.062"] \\
\hline gS 86.4373 & 1 & Holding Sleeve 2" Split for small hex driver \\
\hline gS 86.4400 & 1 & Screwdriver 7 3/4" hex 2.5 mm black plastic handle \\
\hline gS 86.4520 & 1 & Screwdriver 10" hex 3.5 mm black plastic handle \\
\hline gS 98.2114 & 1 & Instrument Stringer with lock 14" \(\times 2\) 1/2" \\
\hline
\end{tabular}

\section*{101/14 - instrument sets}

\section*{Knee}
\begin{tabular}{lr} 
part number & qty \\
gS 12.1580 & 2 \\
gS 12.1600 & 1 \\
gS 12.1620 & 1 \\
gS 16.3100 & 1 \\
gS 16.3920 & 2 \\
gS 16.3980 & 1 \\
gS 16.4940 & 1 \\
gS 17.1630 & 2 \\
gS 17.2100 & 4 \\
gS 17.3720 & 2 \\
gS 17.4040 & 2 \\
gS 17.5080 & 2 \\
gS 17.5160 & 4 \\
gS 20.5620 & 6 \\
gS 21.2750 & 2 \\
gS 22.2760 & 4 \\
gS 22.2860 & 4 \\
gS 34.1845 & 2 \\
gS 35.2980 & 1 \\
gS 36.3580 & 2 \\
gS 36.3640 & 2 \\
gS 36.4720 & 1 \\
gS 37.3060 & 2 \\
gS 38.5980 & 2 \\
gS 42.7140 & 1 \\
gS 43.3580 & 1 \\
gS 43.3620 & 1 \\
gS 43.4120 & 1 \\
gS 49.2018 & 1 \\
gS 49.2220 & 1 \\
gS 49.8620 & 1 \\
gS 49.8660 & 1 \\
gS 49.8700 & 1 \\
gS 49.8800 & 1 \\
gS 49.9280 & 1 \\
gS 62.7500 & 1 \\
gS 75.9250 & 1
\end{tabular}
descriptionScalpel Handle \#3 standard 5"Scalpel Handle \#4 standard 5 1/4"
Scalpel Handle \#7 length 6 1/2"
Super-Cut Lister Scissors 5 1/2"
Super-Cut Mayo Scissors 6 3/4" straight
Super-Cut Mayo Scissors 6 3/4" curved
Super-Cut Metzenbaum Scissors 7" curved
Adson Forceps 4 3/4" serrated \(1 \times 2\) teeth 1.3 mm
4 Allis Tissue Forceps 6" \(3 \times 4\) teeth
Tissue Forceps 5 1/2" 1x2 teeth
Tissue Forceps 5 1/2" \(3 \times 4\) teeth
Kocher Forceps \(51 / 2^{\prime \prime}\) curved serrated \(1 \times 2\) teeth
4 Rochester Ochsner Forceps 16cm [6 1/4"] straight 1x2
2
Crile-Wood Needle Holder 7" serrated TC
Crile Forceps 5 1/2" straight
保
11 Key Elevator 7 1/2" width 1/2"
1 Adson Elevator 6 3/4" curved 7 mm semi-sharp
1 Martin Cartilage Clamp 7 1/2" straight
Walton Cartilage Clamp 8" curved up
Smillie Knife 6 3/4" straight
Knife 6 3/4" curved leftDowning Cartilage Knife 10" concave edge with guards
1 Martin Cartilage Scissors 8" serrated blades21221

\section*{Orthopedic - Major}
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 12.1590 & 2 & Scalpel Handle \#3S mm/cm scale 5" \\
\hline gS 12.1600 & 1 & Scalpel Handle \#4 standard 5 1/4" \\
\hline gS 16.3120 & 1 & Super-Cut Lister Scissors 7 1/4" \\
\hline gS 16.3200 & 1 & Super-Cut Operating Scissors \(51 / 2\) " straight sharp/blunt \\
\hline gS 16.3920 & 1 & Super-Cut Mayo Scissors 6 3/4" straight \\
\hline gS 16.3980 & 1 & Super-Cut Mayo Scissors 6 3/4" curved \\
\hline gS 16.4940 & 1 & Super-Cut Metzenbaum Scissors 7" curved \\
\hline gS 16.5900 & 1 & Super-Cut Stevens Tenotomy Scissors \(41 / 2\) " curved \\
\hline gS 17.1640 & 2 & Adson Forceps 4 3/4" 1x2 teeth delicate 0.9 mm \\
\hline gS 17.1929 & 2 & Adson Brown Forceps 4 3/4" 9x9 teeth \\
\hline gS 17.2240 & 2 & Allis Tissue Forceps \(71 / 2\) " \(5 \times 6\) teeth \\
\hline gS 17.3720 & 2 & Tissue Forceps \(51 / 2^{\prime \prime} 1 \times 2\) teeth \\
\hline gS 17.3760 & 2 & Tissue Forceps 6" 1x2 teeth \\
\hline gS 17.3800 & 2 & Tissue Forceps 8" 1x2 teeth \\
\hline gS 17.4040 & 2 & Tissue Forceps \(51 / 2\) " \(3 \times 4\) teeth \\
\hline gS 17.5260 & 4 & Rochester Ochsner Forceps 18cm [7"] straight 1x2 \\
\hline gS 19.1840 & 2 & Dressing Forceps \(51 / 2\) " serrated \\
\hline gS 19.1884 & 2 & Dressing Forceps 8" serrated \\
\hline gS 20.4860 & 6 & Foerster Forceps 9 1/2" straight serrated \\
\hline gS 20.5620 & 12 & Backhaus Towel Forceps 5 1/4" \\
\hline gS 21.2740 & 2 & Crile-Wood Needle Holder 6" serrated TC \\
\hline gS 21.2750 & 2 & Crile-Wood Needle Holder 7" serrated TC \\
\hline gS 21.4140 & 2 & Mayo Hegar Needle Holder 8" serrated TC \\
\hline gS 22.2560 & 12 & Mosquito Forceps 5" straight (Halsted) \\
\hline gS 22.2580 & 12 & Mosquito Forceps 5" curved (Halsted) \\
\hline gS 22.2660 & 12 & Kelly Forceps 5 1/2" straight \\
\hline gS 22.2680 & 6 & Kelly Forceps \(51 / 2\) " curved \\
\hline gS 22.2860 & 6 & Rankin-Crile Forceps 6 1/4" straight \\
\hline gS 22.2880 & 6 & Rankin-Crile Forceps 6 1/4" curved \\
\hline gS 22.4180 & 2 & Rochester Pean Forceps 16cm [6 1/4"] curved \\
\hline gS 22.4280 & 2 & Rochester Pean Forceps 18cm [7"] curved \\
\hline gS 22.8460 & 2 & Adson Forceps 7 1/4" curved \\
\hline gS 25.1880 & 2 & Joseph Hook 6 1/4" 1 prong sharp \\
\hline gS 25.1920 & 2 & Joseph Hook \(61 / 4\) " 2 prongs sharp 5mm \\
\hline gS 34.1855 & 2 & Senn Retractor \(61 / 4\) " 3 prongs blunt \\
\hline gS 36.1600 & 2 & Hibbs Retractor 9 1/2" \(\mathbf{1 ' ~}^{\prime \prime} \times 3\) " sharp \\
\hline gS 36.1800 & 2 & Israel Retractor 9 1/2" 4 prgs blunt \\
\hline gS 36.3070 & 1 & Richardson Retractor 9 1/2" 3/4" \(\times 1\) " loop handle \\
\hline gS 36.3072 & 1 & Richardson Retractor 9 1/2" \(1^{\prime \prime} \times 1\) 1/4" loop handle \\
\hline gS 36.3074 & 1 & Richardson Retractor 9 1/2" \(11 / 2^{\prime \prime} \times 1\) 1/2" loop handle \\
\hline gS 36.3076 & 1 & Richardson Retractor 9 1/2" \(3 / 4\) " x 2 " loop handle \\
\hline gS 36.3300 & 1 & Deaver Retractor 10" x 1" hollow handle \\
\hline gS 36.3320 & 1 & Deaver Retractor 12" x 1" hollow handle \\
\hline gS 36.3400 & 1 & Deaver Retractor 12" x 2" hollow handle \\
\hline gS 36.3580 & 2 & Volkmann Retractor 8 1/2" 2 prongs sharp \\
\hline gS 36.3640 & 2 & Volkmann Retractor \(81 / 2\) " 4 prongs sharp \\
\hline gS 36.3660 & 2 & Volkmann Retractor 8 1/2" 6 prongs sharp \\
\hline gS 36.3740 & 2 & Volkmann Retractor \(81 / 2\) " 4 prongs blunt \\
\hline gS 36.3760 & 2 & Volkmann Retractor 8 1/2" 6 prongs blunt \\
\hline gS 36.4720 & 2 & US Army Navy Retractor \(81 / 2\) " set of 2 \\
\hline gS 36.6210 & 2 & Cushing Vein Retractor 9" 13mm fenestrated handle \\
\hline gS 38.6020 & 2 & Weitlaner Retractor \(61 / 2\) " sharp 3x4 \\
\hline gS 38.8820 & 2 & Gelpi Retractor 7 1/2" sharp \\
\hline
\end{tabular}

\footnotetext{
continued on next page
}

\section*{101/16 - instrument sets}

\section*{Orthopedic - Major (continued)}
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 42.7140 & 1 & Freer Elevator 7 1/2" double ended 5mm sharp/blunt \\
\hline gS 43.3580 & 1 & Key Elevator 7" width 1/4" \\
\hline gS 43.3620 & 1 & Key Elevator 7 1/2" width 1/2" \\
\hline gS 45.4430 & 1 & Bone Hook 9" medium 19mm sharp \\
\hline gS 45.4440 & 1 & Bone Hook 9" large 25mm sharp \\
\hline gS 51.6650 & 1 & Brun Curette 9" hollow handle straight oval \#0 \\
\hline gS 51.6660 & 1 & Brun Curette 9" hollow handle straight oval \#1 \\
\hline gS 51.6670 & 1 & Brun Curette 9" hollow handle straight oval \#2 \\
\hline gS 51.6680 & 1 & Brun Curette 9" hollow handle straight oval \#3 \\
\hline gS 51.6690 & 1 & Brun Curette 9" hollow handle straight oval \#4 \\
\hline gS 52.5480 & 1 & Smith Peterson Osteotome 8" straight 1/4" [6mm] \\
\hline gS 52.5500 & 1 & Smith Peterson Osteotome 8" straight 1/2" [13mm] \\
\hline gS 52.5520 & 1 & Smith Peterson Osteotome 8" straight 3/4" [19mm] \\
\hline gS 52.5530 & 1 & Smith Peterson Osteotome 8" straight 1" [25mm] \\
\hline gS 52.5580 & 1 & Smith Peterson Osteotome 8" curved 3/8" [10mm] \\
\hline gS 52.5600 & 1 & Smith Peterson Osteotome 8" curved 5/8" [16mm] \\
\hline gS 52.5620 & 1 & Smith Peterson Osteotome 8" curved 1" [25mm] \\
\hline gS 56.5660 & 1 & Smith Peterson Gouge 8" straight 1/4" \\
\hline gS 56.5680 & 1 & Smith Peterson Gouge 8" straight 1/2" \\
\hline gS 56.5770 & 1 & Smith Peterson Gouge 8" straight 3/4" \\
\hline gS 56.5880 & 1 & Smith Peterson Gouge 8" curved 3/8" \\
\hline gS 56.5900 & 1 & Smith Peterson Gouge 8" curved 5/8" \\
\hline gS 56.5930 & 1 & Smith Peterson Gouge 8" curved 1" \\
\hline gS 59.7670 & 1 & Ortho Heavy Mallet 10 1/2" 3lb 3oz [1,446g] head s/s Ø 50mm s/s handle \\
\hline gS 63.6380 & 1 & Ruskin Liston Forceps 7 1/2" straight double action \\
\hline gS 66.6260 & 1 & Ruskin Rongeur \(71 / 2\) " straight 4 mm double action \\
\hline gS 74.7940 & 1 & Ruler Flexible 8" inch/mm graduations \\
\hline gS 75.9240 & 1 & Frazier Suction Tube 7" 7 french 30 degrees working length 85mm \\
\hline gS 75.9250 & 1 & Frazier Suction Tube 7" 8 french 30 degrees working length 85mm \\
\hline gS 75.9260 & 1 & Frazier Suction Tube 7" 10 french 30 degrees working length 85mm \\
\hline gS 83.2980 & 1 & Wire Cutting Scissors 4 3/4" angled with notch \\
\hline
\end{tabular}

\section*{Orthopedic - Minor}
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 12.1580 & 2 & Scalpel Handle \#3 standard 5" \\
\hline gS 12.1600 & 1 & Scalpel Handle \#4 standard 5 1/4" \\
\hline gS 16.3100 & 1 & Super-Cut Lister Scissors \(51 / 2\) " \\
\hline gS 16.3200 & 1 & Super-Cut Operating Scissors \(51 / 2^{\prime \prime}\) straight sharp/blunt \\
\hline gS 16.3980 & , & Super-Cut Mayo Scissors 6 3/4" curved \\
\hline gS 16.4940 & 1 & Super-Cut Metzenbaum Scissors 7" curved \\
\hline gS 16.5900 & 1 & Super-Cut Stevens Tenotomy Scissors \(41 / 2^{\prime \prime}\) curved \\
\hline gS 17.1640 & 2 & Adson Forceps 4 3/4" \(1 \times 2\) teeth delicate 0.9 mm \\
\hline gS 17.1929 & 2 & Adson Brown Forceps 4 3/4"9x9 teeth \\
\hline gS 17.3720 & 2 & Tissue Forceps \(51 / 2^{\prime \prime} 1 \times 2\) teeth \\
\hline gS 17.3760 & 2 & Tissue Forceps 6" 1x2 teeth \\
\hline gS 17.3800 & 2 & Tissue Forceps 8" 1x2 teeth \\
\hline gS 17.5160 & 2 & Rochester Ochsner Forceps 16cm [6 1/4"] straight 1x2 \\
\hline gS 17.5260 & 2 & Rochester Ochsner Forceps 18cm [7"] straight 1x2 \\
\hline gS 19.1840 & 2 & Dressing Forceps \(51 / 2\) " serrated \\
\hline gS 19.1884 & 2 & Dressing Forceps 8" serrated \\
\hline gS 20.4860 & 6 & Foerster Forceps 9 1/2" straight serrated \\
\hline gS 20.5580 & 6 & Backhaus Towel Forceps 3 1/2" \\
\hline gS 20.5620 & 6 & Backhaus Towel Forceps 5 1/4" \\
\hline gS 21.2740 & 2 & Crile-Wood Needle Holder 6" serrated TC \\
\hline gS 21.4020 & 4 & Mayo Hegar Needle Holder 6" serrated TC \\
\hline gS 22.2560 & 6 & Mosquito Forceps 5" straight (Halsted) \\
\hline gS 22.2580 & 6 & Mosquito Forceps 5" curved (Halsted) \\
\hline gS 22.2660 & 6 & Kelly Forceps \(51 / 2^{\prime \prime}\) straight \\
\hline gS 22.2680 & 12 & Kelly Forceps 5 1/2" curved \\
\hline gS 22.2880 & 2 & Rankin-Crile Forceps \(61 / 4\) " curved \\
\hline gS 22.4180 & 6 & Rochester Pean Forceps 16cm [6 1/4"] curved \\
\hline gS 25.1880 & 2 & Joseph Hook 6 1/4" 1 prong sharp \\
\hline gS 25.1920 & 2 & Joseph Hook 6 1/4" 2 prongs sharp 5mm \\
\hline gS 34.1845 & 2 & Senn Retractor \(61 / 4\) " 3 prongs sharp \\
\hline gS 34.2160 & 1 & Meyerding Finger Retractor 7" \#1 \\
\hline gS 34.2180 & 1 & Meyerding Finger Retractor 7" \#2 \\
\hline gS 34.2220 & 1 & Meyerding Finger Retractor 7" \#3 \\
\hline gS 34.2240 & 1 & Meyerding Finger Retractor 7" \#4 \\
\hline gS 34.2280 & 1 & Meyerding Finger Retractor 7" \#5 \\
\hline gS 34.2300 & 1 & Meyerding Finger Retractor 7" \#6 \\
\hline gS 36.3070 & 1 & Richardson Retractor 9 1/2" 3/4" x 1" loop handle \\
\hline gS 36.3072 & 1 & Richardson Retractor 9 1/2" 1 " \(\times 1\) 1/4" loop handle \\
\hline gS 36.3074 & 1 & Richardson Retractor 9 1/2" \(11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}\) loop handle \\
\hline gS 36.3076 & 1 & Richardson Retractor 9 1/2" \(3 / 4\) " x 2 " loop handle \\
\hline gS 36.3300 & 2 & Deaver Retractor 10 " x 1" hollow handle \\
\hline gS 36.3580 & 1 & Volkmann Retractor \(81 / 2\) " 2 prongs sharp \\
\hline gS 36.3620 & 1 & Volkmann Retractor \(81 / 2\) " 3 prongs sharp \\
\hline gS 36.4720 & 2 & US Army Navy Retractor \(81 / 2\) set of 2 \\
\hline gS 36.6210 & 2 & Cushing Vein Retractor 9"13mm fenestrated handle \\
\hline gS 38.5160 & 1 & Alm Retractor 4" blunt \\
\hline gS 38.5980 & 2 & Weitlaner Retractor 5 1/2" sharp 3x4 \\
\hline gS 38.8760 & 1 & Gelpi Retractor 3 1/2" sharp \\
\hline gS 38.8780 & 1 & Gelpi Retractor \(41 / 2^{\prime \prime}\) sharp angled delicate \\
\hline gS 42.7140 & , & Freer Elevator 7 1/2" double ended 5mm sharp/blunt \\
\hline gS 51.6170 & 1 & Brun Curette 7" hollow handle straight oval \#0 \\
\hline gS 51.6190 & 1 & Brun Curette 7" hollow handle straight oval \#1 \\
\hline gS 51.6210 & 1 & Brun Curette 7" hollow handle straight oval \#2 \\
\hline
\end{tabular}

\footnotetext{
continued on next page
}

\section*{101/18 - instrument sets}

Orthopedic - Minor (continued)
part number
gS 51.6230
gS 52.5980
gS 52.5990
gS 52.6000
gS 52.6010
gS 52.6020
gS 52.6030
gS 59.7670
gS 66.6260
gS 74.7920
gS 75.9240
qty
1
1

1
1
1

1
1
\(\begin{array}{ll}1 & \text { Hoke Osteotome } 51 / 4 \text { " straight } 5 / 8 "[16 \mathrm{~mm}] \\ 1 & \text { Ortho Heavy Mallet } 101 / 2^{\prime \prime} \text { 3lb } 30 z[1,446 \mathrm{~g}]\end{array}\)
1 Ortho Heavy Mallet 10 1/2" 3lb 3oz [1,446g] head s/s \(\varnothing 50 \mathrm{~mm} \mathrm{~s} / \mathrm{s}\) handle
1 Ruskin Rongeur 7 1/2" straight 4 mm double action
1 Ruler Flexible 6" inch/mm graduations
\(1 \quad\) Frazier Suction Tube 7" 7 french 30 degrees working length 85 mm
gS 75.9250
gS 75.9260
1 Frazier Suction Tube 7" 8 french 30 degrees working length 85 mm
gS 83.2980
1

\section*{description}

Brun Curette 7" hollow handle straight oval \#3
Hoke Osteotome 5 1/4" straight \(3 / 16^{\prime \prime}\) [ 4 mm ]
Hoke Osteotome 5 1/4" straight 1/4" [6mm]
Hoke Osteotome 5 1/4" straight 5/16" [8mm]
Hoke Osteotome \(51 / 4\) " straight \(3 / 8\) " [10mm]
Hoke Osteotome \(51 / 4\) " straight \(1 / 2^{\prime \prime}\) [13mm]

Frazier Suction Tube 7" 10 french 30 degrees working length 85 mm
Wire Cutting Scissors 4 3/4" angled with notch

\section*{Pin Removal}
\begin{tabular}{lrl} 
part number & qty & description \\
gS 22.4160 & 2 & Rochester Pean Forceps 16cm [6 1/4"] straight \\
gS 81.3214 & 1 & Needle Nose Pliers 5 1/4" delicate with guide \\
gS 81.3464 & 1 & Flat Nose Pliers 7" with end and side grooves \\
gS 81.3466 & 1 & Flat Nose Pliers 7" \\
gS 81.3610 & 1 & Long Jaw Pliers 7" \\
gS 82.4240 & 1 & Wire Twisting Forceps 7 1/2" TC 6mm rounded tip \\
gS 83.7250 & 1 & Side Cutter double action 9" TC max cap 2.4mm [.079"]
\end{tabular}

\section*{Pelvic}
\begin{tabular}{ll} 
part number & qty \\
gS 37.2100 & 1 \\
gS 45.4320 & 1 \\
gS 45.4346 & 1 \\
gS 46.2340 & 1 \\
gS 47.0919 & 1 \\
gS 47.1020 & 1 \\
gS 47.6190 & 1 \\
gS 47.6192 & 1 \\
gS 47.6196 & 1 \\
gS 47.6200 & 1 \\
gS 47.6204 & 1 \\
gS 47.6208 & 1 \\
gS 47.6212 & 1 \\
gS 82.0182 & 2 \\
gS 82.0300 & 1 \\
gS 82.4740 & 1 \\
gS 86.0045 & 1 \\
gS 86.1209 & 2 \\
gS 86.1216 & 2 \\
gS 86.1515 & 1 \\
gS 86.1521 & 1 \\
gS 86.2420 & 1 \\
gS 86.4375 & 1 \\
gS 86.4380 & 1 \\
gS 86.4585 & 1 \\
gS 86.4595 & 1 \\
gS 86.6110 & 1 \\
gS 86.8236 & 2 \\
gS 86.8246 & 2 \\
gS 86.8725 & 2 \\
gS 86.8732 & 2 \\
gS 86.8765 & 2 \\
gS 87.0020 & 1 \\
gS 87.0022 & 4
\end{tabular}

\footnotetext{
description
Pelvic Retractor 10 1/2" x \(1^{\prime \prime}\) blunt
Bone Hook 8" sharp 20mm t-handle
Volkmann Bone Hook 8 1/2" sharp 20mm
Bone Reduction Forceps 8" long ratchet
Farabeuf Lambotte Forceps 7 1/2" adjustable jaw with ratchet
Farabeuf Lambotte Forceps 10" adjustable jaw with ratchet
Pelvic Reduction Forceps 7 3/4" angled short ball tips
Pelvic Reduction Forceps 9 1/2" angled long ball tips
Pelvic Reduction Forceps 10" straight long ball tips
Pelvic Reduction Forceps 16" straight long ball tips
Pelvic Reduction Forceps 16" asymmetric ball tips
Pelvic Reduction Forceps 16" 1x2 long ball tips
Pelvic Reduction Forceps 13 1/2" for screws
Bending Iron \(73 / 4\) " for \(3.5 \mathrm{~mm} / 4.5 \mathrm{~mm}\) plates
Plate Bending Pliers 10" for reconstruction plates
Steinmann Pin Chuck key 4 " cannulated max \(5.0 / 7.0 \mathrm{~mm}\)
T-Handle for small/large screw sets SQC (small quick coupling)
Tap 7" 3.5 mm SQC (small quick coupling) calibrated mm
Tap 7" 4.5 mm SQC (small quick coupling) calibrated mm
Screwdriver Bit hex 6 1/2" 2.5 mm SQC (small quick coupling) with notch
Screwdriver Bit hex 6 1/2" 3.5mm SQC (small quick coupling)
Depth Gauge 11 1/2" 120mm
Holding Sleeve 3" for small hex driver
Holding Sleeve \(5^{\prime \prime}\) for large hex driver
Screwdriver 10 1/2" hex 2.5 mm with notch phenolic handle
Screwdriver 12" hex 3.5 mm with notch black plastic handle
Screw Holding Forceps \(31 / 2^{\prime \prime}\) for \(3.5 \mathrm{~mm}-6.5 \mathrm{~mm}\)
Drill Bit SQC (small quick coupling) \(3.5 \mathrm{~mm} 195 / 50 \mathrm{~mm}\)
Drill Bit SQC (small quick coupling) \(4.5 \mathrm{~mm} 195 / 50 \mathrm{~mm}\)
Drill Bit SQC (small quick coupling) 3 flute calibrated \(2.5 \mathrm{~mm} 230 \mathrm{~mm} / 30 \mathrm{~mm}\)
Drill Bit SQC (small quick coupling) 3 flute calibrated \(3.2 \mathrm{~mm} 230 \mathrm{~mm} / 30 \mathrm{~mm}\)
Drill Bit SQC (small quick coupling) 3 flute \(4.5 \mathrm{~mm} 195 \mathrm{~mm} / 45 \mathrm{~mm}\)
Straight Ball Spike 12"
Spiked Disc 25mm diameter
}

\section*{101/20 - instrument sets}

\section*{Podiatry - Basic}
\begin{tabular}{lr} 
part number & qty \\
gS 12.1580 & 1 \\
gS 13.4021 & 1 \\
gS 13.4022 & 1 \\
gS 15.1920 & 1 \\
gS 15.1950 & 1 \\
gS 15.2200 & 1 \\
gS 15.7920 & 1 \\
gS 15.9040 & 1 \\
gS 17.1666 & 2 \\
gS 17.3720 & 1 \\
gS 18.4660 & 1 \\
gS 19.1620 & 2 \\
gS 19.1840 & 2 \\
gS 20.5580 & 6 \\
gS 21.1700 & 1 \\
gS 21.5480 & 1 \\
gS 22.2560 & 3 \\
gS 22.2580 & 3 \\
gS 22.2760 & 3 \\
gS 22.2780 & 3 \\
gS 42.5980 & 1 \\
gS 42.7140 & 1 \\
gS 50.4050 & 1 \\
gS 50.5080 & 1 \\
gS 50.5920 & 1 \\
gS 54.7500 & 1 \\
gS 62.1710 & 1 \\
gS 75.9230 & 2 \\
gS 77.3910 & 1 \\
gS 77.4480 & 1 \\
gS 81.8520 & 1 \\
gS 83.3000 & 1
\end{tabular}

\author{
description \\ Scalpel Handle \#3 standard 5" \\ Operating Scissors 5 1/2" straight sharp/blunt \\ Operating Scissors 5 1/2" straight sharp/sharp \\ Spencer Stitch Scissors 5" \\ Stitch Scissors \(41 / 2^{\prime \prime}\) angled delicate \\ Littauer Stitch Scissors 5 1/2" \\ Lister Bandage Scissors 5 1/2" \\ Knowles Bandage Scissors 5 1/2" straight one serrated blade \\ Adson Tissue Forceps 4 3/4" \(1 \times 2\) teeth with fenestrated handles \\ Tissue Forceps 5 1/2" 1 x2 teeth \\ Plain Splinter Forceps 4 1/2" straight serrations \\ Adson Dressing Forceps 4 3/4" serrations standard \\ Dressing Forceps 5 1/2" serrations \\ Backhaus Towel Forceps 3 1/2" \\ Webster Needle Holder 5" smooth TC \\ Olsen Hegar Needle Holder 5 1/2" serrated TC \\ Mosquito Forceps 5" straight (Halsted) \\ Mosquito Forceps 5" curved (Halsted) \\ Crile Forceps 5 1/2" straight \\ Crile Forceps 5 1/2" curved \\ Spatula and Packer 5 3/4" \#91 double ended \\ Freer Elevator 7 1/2" double ended 5 mm sharp/blunt Ingrown Nail Shaver 5" single ended with fenestrated blade \\ Curette Excavator 5 1/2" double ended hole \(1.5 \times 2.0 \mathrm{~mm}\) \\ Curette Excavator 5 1/2" double ended hole \(1.5 \times 2.5 \mathrm{~mm}\) \\ Chisel Spade 5 1/4" curved edge \\ Joseph Rasp 6 1/4" 8mm straight fine cross serrations \\ Frazier Suction Tube 7" 6 french 30 degrees working length 85mm \\ Tissue Nipper 4" 9mm \\ Ingrown Nail Splitter 5" English Anvil \\ Platypus Nail Pulling Fcps 5 1/2" standard wide jaws \\ Wire Cutting Scissors 4 3/4" angled with notch TC
}

\section*{Podiatry - Nail Pack}
\begin{tabular}{lr} 
part number & qty \\
gS 12.1580 & 1 \\
gS 13.4021 & 1 \\
gS 17.1929 & 1 \\
gS 21.2700 & 1 \\
gS 22.2560 & 1 \\
gS 22.2580 & 1 \\
gS 22.2660 & 1 \\
gS 42.6790 & 1 \\
gS 42.6900 & 1 \\
gS 42.7140 & 1 \\
gS 50.5040 & 1 \\
gS 50.5570 & 1 \\
gS 61.6380 & 1 \\
gS 77.3940 & 1 \\
gS 77.4260 & 1 \\
gS 77.4440 & 1 \\
gS 77.5480 & 1
\end{tabular}

\section*{description}

Scalpel Handle \#3 standard 5"
Operating Scissors 5 1/2" straight sharp/blunt
Adson Brown Forceps 4 3/4" 9x9 teeth
Crile-Wood Needle Holder 6" serrated
Mosquito Forceps 5" straight (Halsted)
Mosquito Forceps 5" curved (Halsted)
Kelly Forceps 5 1/2" straight
Locke Elevator narrow 4 1/2"
Locke Elevator wide 5"
Freer Elevator 7 1/2" double ended 5 mm sharp/blunt
Curette Excavator \#58-3 hole 2.5 mm
Curette \#4 McGlamry Bullneck 5" 4 mm without hole
Nail Rasp \#93 DE 6 3/4" 2mm angled up/down
Tissue Nipper 5" 14mm
Nail Splitter 5" heavy jaw
Nail Splitter 6" tapered jaw
Nail Splitter 4 1/2" delicate

\section*{Shoulder}
\begin{tabular}{|c|c|c|}
\hline part number & qty & description \\
\hline gS 36.0000 & 1 & Fukuda Style Retractor 7 1/2" 32x81mm \\
\hline gS 36.0001 & 1 & Fukuda Style Retractor \(71 / 2\) " \(38 \times 81 \mathrm{~mm}\) \\
\hline gS 36.3072 & 1 & Richardson Retractor 9 1/2" 1 " \(\times 1\) 1/4" loop handle \\
\hline gS 36.3074 & 1 & Richardson Retractor 9 1/2" \(11 / 2^{\prime \prime} \times 1\) 1/2" loop handle \\
\hline gS 36.3076 & 1 & Richardson Retractor 9 1/2" 3/4" x 2 " loop handle \\
\hline gS 36.9482 & 1 & Hohmann Retractor 10 1/2" \(\times 22 \mathrm{~mm}\) rounded end 3 holes \\
\hline gS 36.9731 & 1 & Capsule Retractor 10" 3 prongs sharp 22mm \\
\hline gS 36.9920 & 1 & Murphy Bone Skid 12" \\
\hline gS 38.8830 & 1 & Gelpi Retractor 7 1/2" blunt \\
\hline gS 40.3260 & 1 & Lamina Spreader 10 1/2" flat blades with teeth \\
\hline gS 40.5820 & 1 & Adson Retractor 12 1/2" \(4 \times 5\) blunt \\
\hline gS 43.9020 & 1 & Darrach Elevator 10" width 1/2" \\
\hline gS 43.9030 & 1 & Darrach Elevator 10" width 5/8" \\
\hline gS 43.9040 & 1 & Darrach Elevator 14" width 1" \\
\hline gS 44.0130 & , & Shoulder Percussion Awl 8 1/2" curved small \\
\hline gS 44.0140 & 1 & Shoulder Percussion Awl \(81 / 2^{\prime \prime}\) curved medium \\
\hline gS 44.0150 & 1 & Shoulder Percussion Awl 8 1/2" curved large \\
\hline gS 44.0160 & 1 & Shoulder Penetrating Awl 9" curved phenolic handle \\
\hline gS 45.4343 & 1 & Volkmann Bone Hook \(81 / 2\) " blunt 20mm \\
\hline gS 46.4116 & 1 & Glenoid Perforating Forceps \(61 / 2\) " strong angle \\
\hline gS 46.4117 & 1 & Glenoid Perforating Forceps \(61 / 2\) " slight angle \\
\hline gS 51.5600 & 1 & Cone Ring Curette 9" aluminum handle 35 degrees angled \#3 8mm s/s \\
\hline gS 56.0190 & 1 & Shoulder Penetrating Gouge \(81 / 2\) " 3 mm \\
\hline gS 82.4940 & 1 & Suture Passer 9" curved with crochet hook phenolic handle \\
\hline gS 82.4942 & 1 & Suture Passer 9" curved with hole phenolic handle \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Spine - Anterior Lumbar} \\
\hline part number & qty & description \\
\hline gS 25.2030 & 1 & gProbe Ball 12" ball outside diameter 2.6 mm angled 90 degree knurled handle \\
\hline gS 43.9920 & 1 & gElevator Endplate Double Handed 17" straight plastic handle 9" black Ø 20mm sharp \\
\hline gS 51.7706 & 1 & gCurette Box Double Handed 17" straight plastic handle 9" black 6x10mm fenestration sharp/blunt \\
\hline gS 51.7812 & 1 & gCurette Double Handed 17" angled plastic handle 9" black oval 2.5 mm \\
\hline gS 51.7814 & 1 & gCurette Double Handed 17" angled plastic handle 9" black oval 4.5 mm \\
\hline gS 51.7817 & 1 & gCurette Double Handed 17" angled plastic handle 9" black oval 7.5 mm \\
\hline gS 51.7820 & 1 & gCurette Double Handed 17" angled plastic handle 9" black oval 10.0mm \\
\hline gS 51.7908 & 1 & gCurette Teardrop Ring Double Handed 17" angled plastic handle 9" black 8.0mm fenestration sharp/sharp \\
\hline gS 66.4840 & 1 & Sypert Rongeur \(141 / 2^{\prime \prime} 8 \mathrm{~mm}\) double action \\
\hline gS 68.9824 & 1 & gRongeur Disc 13" straight 4mm \\
\hline gS 68.9826 & 1 & gRongeur Disc 13" straight 6mm \\
\hline gS 68.9843 & 1 & gRongeur Disc 13" up 3mm serrated jaws \\
\hline gS 70.6302 & 1 & gPunch Spurling Kerrison 13" forward 2mm ejector \\
\hline gS 70.6304 & 1 & gPunch Spurling Kerrison 13" forward 4mm ejector \\
\hline gS 70.6306 & 1 & gPunch Spurling Kerrison 13" forward 6mm ejector \\
\hline \multicolumn{3}{|l|}{optional} \\
\hline gS 43.9286 & 1 & gDissector 10 1/2" slight curved knurled handle 6" 6 mm blunt \\
\hline gS 43.9817 & 1 & gElevator Bone Double Handed 17" curved plastic handle 9" black 17mm sharp \\
\hline gS 43.9925 & 1 & gElevator Endplate Double Handed 17" straight plastic handle 9" black \(\varnothing 25 \mathrm{~mm}\) sharp \\
\hline gS 51.7710 & 1 & gCurette Triangle Double Handed 17" straight plastic handle 9" black 10mm fenestration sharp/blunt \\
\hline gS 51.7802 & 1 & gCurette Double Handed 17" straight plastic handle 9" black oval 2.5 mm \\
\hline gS 51.7804 & 1 & gCurette Double Handed 17" straight plastic handle 9" black oval 4.5 mm \\
\hline gS 51.7807 & 1 & gCurette Double Handed 17" straight plastic handle 9" black oval 7.5 mm \\
\hline gS 51.7810 & 1 & gCurette Double Handed 17" straight plastic handle 9" black oval 10.0 mm \\
\hline gS 53.7918 & 1 & gOsteotome Double Handed 17" straight plastic handle 9" black 18mm \\
\hline gS 53.7925 & 1 & gOsteotome Double Handed 17" straight plastic handle 9" black 25 mm \\
\hline gS 62.9910 & 1 & gRasp Double Handed 17" straight plastic handle 9" black 10mm plain and cross serrations \\
\hline gS 68.9844 & 1 & gRongeur Disc 13" up 4mm serrated jaws \\
\hline gS 68.9848 & 1 & gRongeur Disc 13" up 8 mm serrated jaws \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline des & ction & page & description se & section & page & description & ection & page \\
\hline \# & & & Alexander Farabeuf Raspatory & 42-43 & 26 & Ball Probe & 25 & 9 \\
\hline \#1 Rasp & 61-62 & 8 & Alexander Gouge & 56 & 2 & Ball Spike-quick coupling & 86-87 & 16 \\
\hline \#2 Rasp & 61-62 & 8 & Alligator Forceps & 26 & 1 & Ball Spike-straight & 86-87 & 16 \\
\hline \#3 Rasp & 61-62 & 8 & Allis Adair Forceps & 17 & 9 & Banana Knife & 30 & 1 \\
\hline \#3 Scalpel Handle & 12 & 1 & Allis Tissue Forceps & 17 & 9 & Bandage Scissors & 15 & 4-8 \\
\hline \#3 K Scalpel Handle & 12 & 1 & Alm Retractor & 38-40 & 1 & Bandage Scissors-Lister & 15 & 4 \\
\hline \#4 Rasp & 61-62 & 8 & Aluminum Mallet & 59 & 10 & Bandage Scissors-super-cut & 16 & 7-8 \\
\hline \#4 Scalpel Handle & 12 & 3 & Amputation Knife & 65 & 2 & Bankart Glenoid Punch & 44 & 2 \\
\hline \#5 Rasp & 61-62 & 8 & Amputation Saw & 65 & 3 & Bankart Humeral Retractor & 34-37 & 27 \\
\hline \#6 Rasp & 61-62 & 8 & Amputation Set & 101 & 2 & Bankart Ligature Carrier & 82 & 21 \\
\hline \#7 Rasp & 61-62 & 8 & Amputation Shield & 65 & 3 & Bariatric Kelly Sponge Forceps & 20 & 2 \\
\hline \#7 Scalpel Handle & 12 & 1-2 & Anderson-Neivert Osteotome & 52-53 & 5 & Bariatric Needle Holder & 21 & 6 \\
\hline \#8 Rasp & 61-62 & 8 & Andrews Pynchon Suction Tube & 75-76 & 2 & Bariatric Scissors & 13-14 & 10 \\
\hline \#9 (7K) Scalpel Handle & 12 & 1 & Angled Nose Rod Holder & 82 & 14-15 & Bariatric Suture Forceps & 17 & 7 \\
\hline \#10 Bone File & 61-62 & 2 & Angled Pin Cutter & 83 & 8 & Bariatric Tissue Forceps & 17 & 8 \\
\hline \#12 Bone File & 61-62 & 3 & Angled Stitch Scissors & 15 & 1 & Bariatric Zenker Ligature Fcps & 22 & 10 \\
\hline \#12A Bone File & 61-62 & 3 & Angled Wire Cutter & 83 & 3-4,7 & Baron Suction Tube & 75-76 & 1 \\
\hline \#12CA Bone File & 61-62 & 3 & Anterior Lumbar Bone Rongeur & 66 & 14 & Barraquer Cilia Forceps & 27 & 4 \\
\hline \#33 Bone File & 61-62 & 2 & Anterior Lumbar Curette & 51 & 10,15 & Barraquer Needle Holder & 24 & 1 \\
\hline \#45 Bone File & 61-62 & 3 & Anterior Lumbar Dissector & 42-43 & 6 & Barraquer Suture Forceps & 27 & 4 \\
\hline \#49 Mallet & 59 & 2 & Anterior Lumbar Elevator & 42-43 & 38 & Barsky Skin Hook & 25 & 4 \\
\hline \#64 Rasp & 61-62 & 1 & Anterior Lumbar Osteotome & 52-53 & 11 & Bayonet Bone File & 61-62 & 11 \\
\hline \#92A Bone File & 61-62 & 1 & Anterior Lumbar Probe & 25 & 9 & Bayonet Curette & 51 & 11 \\
\hline \#92B Bone File & 61-62 & 1 & Anterior Lumbar Punch & 70 & 8 & Bayonet Dressing Forceps & 19 & 3-4 \\
\hline \#93 Nail Rasp & 61-62 & 1 & Anterior Lumbar Rasp & 61-62 & 9 & Bayonet Joseph Saw & 65 & 2 \\
\hline \#1015/4 Scalpel Handle & 12 & 4 & Anterior Lumbar Rongeur & 67-68 & 11 & Bayonet Knife & 30 & 1 \\
\hline \#1015/8 Scalpel Handle & 12 & 2 & Anterior Lumbar Spine Set & 101 & 22 & Bayonet Micro Dissector & 33 & 3 \\
\hline \#1015/9 Scalpel Handle & 12 & 3-4 & Anvil-Plate Bending Pliers & 82 & 8 & Bayonet Scalpel Handle & 12 & 1,3 \\
\hline \#1017/8 Scalpel Handle & 12 & 2 & Anvil-Plate Bending Press & 82 & 9 & Bayonet Spreader & 38-40 & 23 \\
\hline A & & & Approximation Forceps & 17 & 3 & Bayonet Tissue Forceps & 17 & 6,8 \\
\hline Abramsohn Retractor & 38-40 & 20 & Army Navy Retractor & 34-37 & 16 & Beale Spatula and Packer & 42-43 & 2 \\
\hline Acetabular Knife & 49 & 1 & Army Pattern Chisel & 54 & 3 & Beaver-style Scalpel Handle & 12 & 1 \\
\hline Adair Breast Clamp & 29 & 1 & Army Pattern Gouge & 56 & 1 & Beckman Eaton Retractor & 38-40 & 16 \\
\hline Adaptor for Power Drill QC & 86-87 & 13 & Army Pattern Osteotome & 52-53 & 7 & Beckman Retractor & 38-40 & 16 \\
\hline Adson Artery Forceps & 22 & 5 & Artery Forceps & 22 & 5,7 & Beckman-Adson Retractor & 38-40 & 15 \\
\hline Adson Bayonet Dressing Fcps & 19 & 3 & Arthroscopy Instruments & 30 & 1-8 & Beckman-Weitlaner Retractor & 38-40 & 15 \\
\hline Adson Brown Forceps & 17 & 4 & Atraumatic Tissue Forceps & 17 & 6-7,9 & Beeson Cast Spreader & 73 & 2 \\
\hline Adson Dressing Forceps & 19 & 2-3 & Aufranc Cobra Retractor & 34-37 & 40-41 & Bending Iron & 82 & 5-6 \\
\hline Adson Dura Hook & 25 & 7 & Aufricht Rasp & 61-62 & 7 & Bennett Retractor & 34-37 & 38 \\
\hline Adson Elevator & 42-43 & 14 & Awls & 44 & 1-2 & Bent Hohmann Retractor & 34-37 & 43-44 \\
\hline Adson Hemostatic Forceps & 22 & 5 & B & & & Bergh Cilia Forceps & 27 & 4 \\
\hline Adson Hypophyseal Bay Fcps & 17 & 8 & Babcock Forceps & 17 & 10 & Bergman Mallet & 59 & 6-7 \\
\hline Adson Nerve Hook & 25 & 7 & Baby Metz Scissors-super-cut & 16 & 3 & Bethune Rib Shears & 64 & 1 \\
\hline Adson Retractor & 38-40 & 12-16 & Baby Ribbon Retractor & 34-37 & 3 & Beveled Jaw Nail Nipper & 77 & 7 \\
\hline Adson Rongeur & 66 & 6 & Backhaus Roeder Towel Fcps & 20 & 3 & Beyer Rongeur & 66 & 8 \\
\hline Adson Suction Tube & 75-76 & 2 & Backhaus Towel Forceps & 20 & 3 & Billeau Ear Loop & 26 & 2 \\
\hline Adson Tissue Forceps & 17 & 4-5 & Bailey Forceps & 22 & 6 & Biopsy Clamp & 17 & 3 \\
\hline Aggressor Forceps & 30 & 7 & Bailey Rib Contractor & 38-40 & 37 & Bircher-Ganske Clamp & 49 & 5 \\
\hline Aiach Cartilage Graft Forceps & 49 & 4 & Balfour Retractor & 38-40 & 37 & Bishop Bone Forceps & 46-47 & 27 \\
\hline Alerdyce Elevator & 42-43 & 10 & Ball and Socket Towel Forceps & 20 & 4 & Bishop Harmon Forceps & 27 & 3 \\
\hline Alexander Chisel & 54 & 4 & Ball End Elevator & 42-43 & 10 & Blade Ejector Forceps & 38-40 & 32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline description & section & page & description s & section & page & description s & section & page \\
\hline Blade Remover & 12 & 4 & Bone Rongeur-anterior lumbar & 66 & 14 & Care and Cleaning & 100 & 3-4 \\
\hline Blade Retractor & 34-37 & 32 & Bone Rongeurs-DA & 66 & 8-16 & Carmalt Splinter Forceps & 18 & 1 \\
\hline Blade Safe & 12 & 4 & Bone Rongeurs-SA & 66 & 1-7 & Carroll Bone Hook & 45 & 2 \\
\hline Blair/Rollet Retractor & 25 & 4 & Bone Saws & 65 & 1-2 & Carroll Elevator & 42-43 & 5 \\
\hline Blount Retractor & 34-37 & 34 & Bone Skid & 34-37 & 42 & Carroll Tendon Pulling Forceps & 49 & 6 \\
\hline Blumenthal Rongeur & 66 & 3 & Bone Tamps & 60 & 1-4 & Carrier-ligature & 82 & 21-22 \\
\hline Boehler Bone Forceps & 63 & 3 & Bone Waxer-microdiscectomy & 33 & 2,4 & Cartilage Clamp & 49 & 5 \\
\hline Boehler Ruskin Rongeur & 66 & 9 & Bone-Graft Set & 101 & 2 & Cartilage Crusher & 26 & 5 \\
\hline Boehler Wire and Pin Tractor & 82 & 24 & Bone-Holding, Large Set & 101 & 3 & Cartilage File & 30 & 2 \\
\hline Bone Awls & 44 & 1-2 & Bone-Holding, Small Set & 101 & 3 & Cartilage Instruments & 49 & 1-8 \\
\hline Bone Chip Packer & 60 & 3 & Bone-Large Set & 101 & 4 & Cartilage Knife & 49 & 2 \\
\hline Bone Clamp & 46-47 & 7-21 & Bone-Small Set & 101 & 4 & Cartilage Scissors & 49 & 7 \\
\hline Bone Compass & 74 & 3 & Bonney Tissue Forceps & 17 & 5 & Case-small instruments & 98-99 & 10 \\
\hline Bone Crusher & 84 & 1-3 & Bow-Kirschner & 82 & 24 & Caspar Bayonet Micro Dissecto & or33 & 3 \\
\hline Bone Curette-hollow handle & 51 & 8 & Bowman Probe & 27 & 1 & Caspar Blade & 38-40 & 32 \\
\hline Bone Curette-T-handle & 51 & 9 & Box Curette & 51 & 15 & Caspar Bone Curette & 51 & 13 \\
\hline Bone Curettes & 51 & 1-16 & Brain Spatula & 34-37 & 2-3 & Caspar Bone Graft Holder & 38-40 & 28 \\
\hline Bone Cutter-microdiscectomy & 33 & 2 & Brand Tendon Pulling Forceps & 49 & 6 & Caspar Bone Tamp & 60 & 1 \\
\hline Bone Cutting Forceps & 63 & 1-6 & Breast Clamp-Adair & 29 & 1 & Caspar Cervical Spreader & 38-40 & 33 \\
\hline Bone File \#10 & 61-62 & 2 & Bristow/Bankart Retractor & 34-37 & 27 & Caspar Distractor & 38-40 & 27 \\
\hline Bone File \#12 & 61-62 & 3 & Brown Forceps & 17 & 3 & Caspar Distractor Body & 38-40 & 27 \\
\hline Bone File \#12A & 61-62 & 3 & Brown Needle Holder & 21 & 4 & Caspar Distractor Drill Guide & 38-40 & 27 \\
\hline Bone File \#12CA & 61-62 & 3 & Browne-Deltoid Retractor & 34-37 & 31 & Caspar IVD Rongeur & 67-68 & 4,9 \\
\hline Bone File \#33 & 61-62 & 2 & Brun Curette Rack & 98-99 & 9 & Caspar Nerve Root Retractor & 34-37 & 11 \\
\hline Bone File \#45 & 61-62 & 3 & Brun Curette-hex handle & 51 & 4 & Caspar Retractor Handle & 38-40 & 33 \\
\hline Bone File \#92A & 61-62 & 1 & Brun Curette-hollow handle & 51 & 1-2,4 & Cast Breakers & 73 & 1 \\
\hline Bone File \#92B & 61-62 & 1 & Brun Curette-oval cup & 51 & 2,4 & Cast Removal & 73 & 1-2 \\
\hline Bone File Rasp & 61-62 & 10 & Brun Curette-round cup & 51 & 1 & Cast Spreaders & 73 & 2 \\
\hline Bone File-bayonet handle & 61-62 & 11 & Brunner Retractor & 34-37 & 20 & Castroviejo Caliper & 74 & 1 \\
\hline Bone File-Miller Colburn & 61-62 & 4-5 & Bruns Shears & 15 & 5 & Castroviejo Needle Holder & 24 & 1 \\
\hline Bone Files and Rasps & 61-62 & 1-12 & Brush-cleaning & 98-99 & 4 & Castroviejo Suture Forceps & 27 & 3 \\
\hline Bone Forceps-Liston & 63 & 2 & Buck Ear Curette & 26 & 2 & Catheter Forceps & 20 & 1 \\
\hline Bone Fragment Clamp & 46-47 & 21 & Buck Neuro Hammer & 11 & 3 & Cerclage Pliers with cutter & 81 & 3 \\
\hline Bone Graft Cutter & 38-40 & 24 & Bullneck Curette-McGlamry & 50 & 2 & Cerclage Scissors & 83 & 1 \\
\hline Bone Graft Holder & 60 & 3 & Bunge Evisceration Spoon & 27 & 2 & Cerclage Wire & 78-79 & 3 \\
\hline Bone Graft Holder/Impactor & 38-40 & 28 & Bunnell Tendon Stripper & 49 & 2 & Cerebellum Retractor & 38-40 & 12-13 \\
\hline Bone Holding Forceps & 46-47 & 1-28 & Bushe Curette & 51 & 4-5 & Cervical Microdiscectomy & 33 & 2-3 \\
\hline Bone Hook-Carroll & 45 & 2 & C & & & Cervical Retractor Blade & 38-40 & 33 \\
\hline Bone Hook-T-handle & 45 & 1 & Cable Cutter & 83 & 16 & Cervical Retractor Handle & 38-40 & 33 \\
\hline Bone Hook-Volkmann & 45 & 1 & Calcaneal Spreader & 38-40 & 3 & Cervical Spreader & 38-40 & 19 \\
\hline Bone Hooks & 45 & 1-2 & Calipers & 74 & 1-2 & Cervical Spreader-Caspar & 38-40 & 33 \\
\hline Bone Impactor Forceps & 60 & 3 & Campbell Nerve Root Retractor & r 34-37 & 11 & Cervical/Lumbar Impactor & 60 & 2 \\
\hline Bone Impactors & 60 & 1-3 & Cannulated Drill Bit & 86-87 & 6 & Chalazion Curette & 27 & 2 \\
\hline Bone Mill-hand-held & 84 & 3 & Cannulated SQC Handle & 86-87 & 9 & Chalazion Forceps & 27 & 2 \\
\hline Bone Mill-table top & 84 & 1 & Cannulated Wire Cutter & 83 & 6 & Chandler Elevator & 42-43 & 28 \\
\hline Bone Plug Cutter & 65 & 1 & Cap for K-Wire/Pin Dispenser & 98-99 & 1-2 & Charnley Blade & 38-40 & 38 \\
\hline Bone Rasp \#64 & 61-62 & 1 & Cap for Mallet & 59 & 3-5,7-8 & Charnley Retractor & 38-40 & 38 \\
\hline Bone Raspatory & 42-43 & 15 & Capsule Retractor & 34-37 & 29 & Charriere Amputation Saw & 65 & 3 \\
\hline Bone Rasp-double handed & 61-62 & 9 & Capsule Scissors & 49 & 7 & Children's Hospital Retractor & 34-37 & 13 \\
\hline Bone Rasps & 61-62 & 1-11 & Cardan Joint Socket Wrench & 86-87 & 15 & Chisel and Spatula & 42-43 & 2 \\
\hline Bone Reduction Forceps & 46-47 & 2-28 & Cardan Screwdriver & 86-87 & 11 & Chisel Blade & 52-53 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline description & section & page & description se & section & page & description se & section & page \\
\hline Chisel Spade & 54 & 1 & Conversion Charts & 100 & 1-2 & Cutting Drum-bone mill & 84 & 1 \\
\hline Chisel-Army pattern & 54 & 3 & Corn Knife & 12 & 4 & D & & \\
\hline Chisel-Hibbs & 54 & 5 & Corwin Wire Twister & 82 & 17 & Daicoff Vascular Forceps & 17 & 5 \\
\hline Chisel-Hoke & 54 & 2 & Coryllos Retractor & 34-37 & 20 & Dale Rongeur & 66 & 13 \\
\hline Chisel-Lexer & 54 & 4 & Cottle Cartilage Crusher & 26 & 5 & Dandy Nerve Hook & 25 & 8 \\
\hline Chisel-mini Lexer & 54 & 3 & Cottle Elevator & 42-43 & 9,16 & Dandy Trigeminal Scissors & 13-14 & 9 \\
\hline Chisel-spinal fusion & 54 & 6 & Cottle Mallet & 59 & 5 & Darrach Elevator & 42-43 & 29 \\
\hline Chisels & 54 & 1-6 & Cottle Rasp & 61-62 & 7 & Davis Brain Spatula & 34-37 & 3 \\
\hline Chuck-universal & 82 & 1 & Cottle Septum Chisel & 54 & 2 & Davis Dissector & 42-43 & 8 \\
\hline Cilia Forceps & 27 & 4 & Cotton and Dressing Forceps & 19 & 3 & Davis Foreign Body Spud & 27 & 1 \\
\hline Cinelli Osteotome & 52-53 & 6 & Countersink & 86-87 & 8 & Davis Retractor & 34-37 & 4 \\
\hline Clamp-bone fragment & 46-47 & 21 & Cox-style Metatarsal Retractor & 38-40 & 4 & Deaver Retractor & 34-37 & 23-25 \\
\hline Clean Wave Caspar Rongeur & 67-68 & 4 & Crane Mallet & 59 & 5,8 & DeBakey Forceps & 17 & 6-7 \\
\hline Clean Wave Cushing Rongeur & 67-68 & 3 & Crego Elevator & 42-43 & 17 & Debakey Needle Holder & 21 & 3 \\
\hline Clean Wave Kerrison Punch & 69 & 5 & C-Retractor & 34-37 & 45 & Decker IVD Rongeur & 67-68 & 6 \\
\hline Clean Wave Love Gruen Rong & 67-68 & 3 & Crile Forceps & 22 & 3 & Deep Gelpi Retractor & 38-40 & 6-9 \\
\hline Clean Wave Spurling Rongeur & 67-68 & 4 & Crile Retractor & 34-37 & 3 & Deep Rake Retractor & 34-37 & 18 \\
\hline Cleaning Brushes & 98-99 & 4 & Crile-Wood Needle Holder & 21 & 2 & Delicate Nail Nipper & 77 & 5 \\
\hline Cleaning Stylet & 98-99 & 4 & Crown and Collar Scissors & 83 & 1 & Delicate Nail Splitter & 77 & 2 \\
\hline Cleveland Bone Forceps & 63 & 1 & Cruciform Bit & 86-87 & 7 & Delicate Pliers & 81 & 2 \\
\hline Cleveland Rongeur & 66 & 5 & Cruciform Screwdriver & 86-87 & 9 & Deltoid Retractor-Browne & 34-37 & 31 \\
\hline Clip Applying Forceps & 23 & 1 & Curette \#4 McGlamry & 50 & 2 & Demel Wire Guide & 82 & 22 \\
\hline Cloward Rongeur & 67-68 & 8 & Curette Excavator & 50 & 1-2 & Depth Gauges & 86-87 & 12 \\
\hline Cloward Vertebra Spreader & 38-40 & 18 & Curette-anterior lumbar & 51 & 10,15 & Derf Needle Holder & 21 & 1 \\
\hline Cloward-style Mallet & 59 & 4,6 & Curette-arthroscopy & 30 & 2 & Dermal Curettes & 50 & 1-6 \\
\hline Cobb Curette-aluminum handle & e 51 & 8 & Curette-bone & 51 & 1-16 & D'Errico Bayonet Tissue Fcps & 17 & 6 \\
\hline Cobb Curette-hollow handle & 51 & 7 & Curette-Brun & 51 & 1-2 & D'Errico Bayonet Dressing Fcps & s 19 & 4 \\
\hline Cobb Curette-solid ss handle & 51 & 7 & Curette-chalazion & 27 & 2 & D'Errico-Adson Retractor & 38-40 & 13 \\
\hline Cobb Elevator-aluminum hdl & 42-43 & 30,32 & Curette-Cobb & 51 & 7 & Deschamps Ligature Carrier & 82 & 22 \\
\hline Cobb Elevator-hex handle & 42-43 & 29 & Curette-cone ring & 51 & 12-14 & Desmarres Lid Retractor & 34-37 & 8 \\
\hline Cobb Elevator-phenolic hande & 42-43 & 31 & Curette-dermal & 50 & 1-6 & Detachable Handle-pin cutter & 83 & 14 \\
\hline Cobb Elevator-solid ss handle & 42-43 & 32 & Curette-ear & 26 & 2 & Detachable Handle-rod bender & r 82 & 11 \\
\hline Cobb Gouge & 56 & 5 & Curette-microdiscectomy & 33 & 2-4 & Detachable Handle-rod shears & 83 & 15 \\
\hline Cobb Osteotome & 52-53 & 9 & Curette-Rhoton & 33 & 1 & Diagnostic Hammer & 11 & 3-4 \\
\hline Cobra Retractor & 34-37 & 40-41 & Curette-spinal fusion & 51 & 6 & Diagnostic Instruments & 11 & 1-4 \\
\hline Collateral Retractor & 34-37 & 35-36 & Curette-Volkmann & 51 & 1,6 & Diamond Nose Rasp & 61-62 & 7 \\
\hline Coller Forceps & 22 & 3 & Curette-Zielke ring & 51 & 14 & Diamond Pin Cutter & 83 & 6 \\
\hline Collier Needle Holder & 21 & 3 & Cushing Bayonet Dress Fcps & 19 & 3 & Dilator-tracheal & 26 & 6 \\
\hline Collin Mallet & 59 & 4 & Cushing Bayonet Tissue Fcps & 17 & 6 & Dilator-Trousseau & 26 & 6 \\
\hline Combination Mallet & 59 & 3 & Cushing Decompress Retractor & r 34-37 & 12 & Dingman Elevator & 42-43 & 7 \\
\hline Combination Wrench & 86-87 & 15 & Cushing Dressing Forceps & 19 & 3 & Dingman Forceps & 46-47 & 8 \\
\hline Comedone Extractor & 50 & 4-5 & Cushing Dura Hook & 25 & 1 & Director-grooved & 11 & 2 \\
\hline Compact Jaw Nail Splitter & 77 & 3 & Cushing Elevator & 42-43 & 24 & Disc Rongeur & 67-68 & 11 \\
\hline Compass-bone & 74 & 3 & Cushing IVD Rongeur & 67-68 & 3,7 & Discectomy Retractor & 38-40 & 14 \\
\hline Compressor-MIS & 38-40 & 26 & Cushing Nerve Hook & 25 & 7 & Dispenser-K-Wire and Pin & 98-99 & 1-2 \\
\hline Compressor-parallel & 38-40 & 26 & Cushing Tissue Forceps & 17 & 2 & Dissecting Forceps-Rumel & 22 & 7 \\
\hline Concave Jaw Nail Nipper & 77 & 5-8 & Cushing Vein Retractor & 34-37 & 12 & Dissecting Scissors & 13-14 & 7 \\
\hline Cone Ring Curette & 51 & 12-14 & Cuticle Nipper & 77 & 1 & Dissecting Scissors-super-cut & 16 & 1-5 \\
\hline Converse Needle Holder & 21 & 3 & Cutter-cable & 83 & 16 & Dissector and Hook & 42-43 & 13 \\
\hline Converse Osteotome & 52-53 & 5 & Cutter-finger ring & 11 & 4 & Dissector-anterior lumbar & 42-43 & 6 \\
\hline Converse Skin Hook & 25 & 3 & Cutters-bone & 63 & 1-6 & Dissector-Caspar micro & 33 & 3 \\
\hline
\end{tabular}

110/4 - alphabetical index
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline description & section & page & description s & section & page & description & section & page \\
\hline Dissector-Davis & 42-43 & 8 & Dura Hook-Adson & 25 & 7 & F & & \\
\hline Dissector-discectomy & 42-43 & 6 & Dura Hook-Cushing & 25 & 1 & Farabeuf Lambotte Forceps & 46-47 & 20 \\
\hline Dissector-McCulloch & 42-43 & 8 & Dura Separator & 42-43 & 11 & Farabeuf Raspatory & 42-43 & 26 \\
\hline Dissector-microdiscectomy & 33 & 3 & Dura Separator and Packer & 42-43 & 11 & Farabeuf Retractor & 34-37 & 13 \\
\hline Dissector-Penfield micro & 33 & 4 & Dural Separator-Hoen & 25 & 6 & Favaloro-Morse Spreader & 38-40 & 37 \\
\hline Dissector-Rhoton & 33 & 1 & E & & & Feilchenfeld Splinter Forceps & 18 & 1 \\
\hline Distraction Screw-driver & 38-40 & 28 & Ear Curette & 26 & 2 & Femoral Head Extractor & 86-87 & 15 \\
\hline Distraction Screws & 38-40 & 28 & Ear Dressing Forceps & 26 & 1 & Femoral Neck Elevator & 42-43 & 33-36 \\
\hline Distractor-Caspar & 38-40 & 27 & Ear Loop & 26 & 2 & Femoral Tibial Spreader & 38-40 & 23 \\
\hline Distractor-MIS & 38-40 & 26 & Ear-Nose-Throat & 26 & 1-6 & Fergusson Bone Forceps & 46-47 & 16 \\
\hline Distractor-open with guides & 38-40 & 25 & Easy2Clean Kerrison Punch & 69 & 1-4 & Fergusson Forceps & 22 & 8 \\
\hline Distractor-parallel & 38-40 & 26 & Echlin Duckbill Rongeur & 66 & 12 & Ferris Smith Grasper Rongeur & 67-68 & 12 \\
\hline Distractor-vertebra & 38-40 & 25 & Edna Towel Forceps & 20 & 3 & Ferris Smith IVD Rongeur & 67-68 & 10 \\
\hline Distractor-with guides & 38-40 & 25 & Ejector Forceps-retractor blade & 38-40 & 32 & Ferris Smith Kerrison Punch & 70 & 4 \\
\hline Dix Spud and Needle & 27 & 1 & Elevator and Spatula & 42-43 & 2,11 & Ferris Smith Punch-silicone & 72 & 1-2 \\
\hline Doane Knee Retractor & 34-37 & 33 & Elevator-anterior lumbar & 42-43 & 38 & Ferris Smith Tissue Forceps & 17 & 5 \\
\hline Double Action Pin Cutters & 83 & 7-14 & Elevator-Darrach & 42-43 & 29 & Fibula Forceps & 46-47 & 9 \\
\hline Double Action Wire Cutters & 83 & 3-7 & Elevator-double handed & 42-43 & 38 & File-arthroscopy cartilage & 30 & 2 \\
\hline Double Drill Guide & 86-87 & 4 & Elevator-Key & 42-43 & 14 & Files-bone & 61-62 & 1-12 \\
\hline Double Drill Sleeve & 86-87 & 2 & Elevator-Locke & 42-43 & 5 & Fine Scissors & 13-14 & 1 \\
\hline Double Ended Curettes & 50 & 1,4-6 & Elevator-Penfield & 42-43 & 12-13 & Finger Retractor & 34-37 & 8 \\
\hline Double Ended Probe & 11 & 2 & Elevator-periosteal & 42-43 & 18-21 & Finger Ring Cutter & 11 & 4 \\
\hline Double Handed Curettes & 51 & 9-10,15 & Elevator-Rhoton & 33 & 1 & Finochietto Rib Spreader & 38-40 & 35-36 \\
\hline Double Handed Elevator & 42-43 & 38 & Elevator-rib & 42-43 & 37 & Fisch Perforator & 26 & 3 \\
\hline Double Handed Osteotome & 52-53 & 11 & Elevators & 42-43 & 1-38 & Fixation-wire and pin & 78-79 & 1-4 \\
\hline Double Handed Rasp & 61-62 & 9 & Elevator-Wagner & 42-43 & 37 & Flat Nose Pliers & 81 & 2,4-6 \\
\hline Double Hinged Retractor & 38-40 & 32 & Ellis Foreign Body Spud & 27 & 1 & Flat Nose Pliers with cutter & 81 & 6 \\
\hline Douglas Cilia Forceps & 27 & 4 & End Cutter and Holder DA & 83 & 6 & Flexible Retractor & 25 & 6 \\
\hline Downcutting Rasps & 61-62 & 4-9 & End Pin Cutter DA & 83 & 7,11-12 & Flush Wire Cutter & 83 & 4-5 \\
\hline Downing Cartilage Knife & 49 & 2 & End Wire Cutter & 83 & 2 & Flush Wire Cutter-silicone & 83 & 5 \\
\hline Doyen Myoma Screw & 29 & 2 & End Wire Cutter DA & 83 & 4-6 & Foerster Sponge Forceps & 20 & 2 \\
\hline Doyen Rib Raspatory & 42-43 & 27 & Endplate Elevator & 42-43 & 38 & Fomon Rasp & 61-62 & 10 \\
\hline Doyen Scissors & 13-14 & 9 & English Anvil Nail Splitter & 77 & 4 & Foraminotomy Punch & 70 & 5 \\
\hline Dressing Forceps & 19 & 1-4 & Episiotomy Scissors-super-cut & 16 & 6 & Forceps Instrument Holder & 98-99 & 4 \\
\hline Dressing Forceps-Adson & 19 & 2-3 & Epstein Curette & 51 & 3 & Forceps-Adson tissue & 17 & 4-5 \\
\hline Dressing Forceps-bayonet & 19 & 3-4 & Esmarch Shears & 15 & 5 & Forceps-arthroscopy & 30 & 3-5,7 \\
\hline Dressing Forceps-eye & 27 & 3 & Evisceration Spoon-Bunge & 27 & 2 & Forceps-bayonet dressing & 19 & 3-4 \\
\hline Drill Bit-cannulated & 86-87 & 6 & Excavator and Packer & 42-43 & 1 & Forceps-bayonet tissue & 17 & 6,8 \\
\hline Drill Bit-power drills & 86-87 & 6 & Excavator and Probe & 42-43 & 1 & Forceps-bone cutting & 63 & 1-6 \\
\hline Drill Bit-quick coupling & 86-87 & 5-6 & Excavator-curette & 50 & 1-2 & Forceps-bone reduction & 46-47 & 2-28 \\
\hline Drill Guide & 86-87 & 3-4 & Extraction Pliers-pin & 81 & 5 & Forceps-bone/plate holding & 46-47 & 1-28 \\
\hline Drill Guide Neutral/Load & 86-87 & 3 & Extraction Pliers-wire & 81 & 8 & Forceps-clip applying & 23 & 1 \\
\hline Drill Guide/Sleeve & 86-87 & 4 & Extractor-comedone & 50 & 4-5 & Forceps-DeBakey & 17 & 6-7 \\
\hline Drill Guide-universal & 86-87 & 3 & Extractor-femoral head & 86-87 & 15 & Forceps-ear & 26 & 1 \\
\hline Drill Racks & 98-99 & 7-8 & Extractor-rigid screw & 86-87 & 15 & Forceps-eye & 27 & 2-4 \\
\hline Drill Sleeve & 86-87 & 1-2 & Extractor-Varady & 42-43 & 4 & Forceps-eye dressing & 27 & 3 \\
\hline Drills-twist & 86-87 & 6 & Eye Dressing Forceps & 27 & 3 & Forceps-hemostatic & 22 & 1-10 \\
\hline Driver-manual wire/pin & 82 & 2-3 & Eye Instruments & 27 & 1-4 & Forceps-impactor & 60 & 3 \\
\hline Drum-cutting-bone mill & 84 & 1 & Eye Probe & 27 & 1 & Forceps-Kelly & 22 & 3 \\
\hline Dual Compression Drill Guide & 86-87 & 3 & Eyelid Retractor & 34-37 & 8 & Forceps-micro hemostatic & 22 & 1 \\
\hline Duckbill Shamb Derlacki Rasp & 26 & 4 & & & & Forceps-mosquito & 22 & 1-2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline description S & section & page & description s & section & page & description & section & page \\
\hline Forceps-retriever/wire passer & 82 & 23 & gDistractor & 38-40 & 25-26 & Gouge-Lexer & 56 & 5 \\
\hline Forceps-screw holding & 86-87 & 14 & gDistractor-MIS & 38-40 & 26 & Gouge-swan neck & 56 & 4 \\
\hline Forceps-splinter & 18 & 1-2 & gDistractor-parallel & 38-40 & 26 & Gouges & 56 & 1-6 \\
\hline Forceps-sponge & 20 & 1-2 & gDrill Bits-twist & 86-87 & 6 & gPin Cutter DA & 83 & 8 \\
\hline Forceps-Stille-Horsley & 63 & 5 & gElevator-bone double handed & 42-43 & 38 & gPin Cutter DA-silicone & 83 & 8 \\
\hline Forceps-tissue & 17 & 1-10 & gElevator-endplate double hd & 42-43 & 38 & gPliers, Slip Joint & 81 & 7 \\
\hline Forceps-towel & 20 & 3-4 & gElevator-femoral neck & 42-43 & 33-36 & gProbe-Ball & 25 & 9 \\
\hline Forceps-vascular & 17 & 5 & gElevator-Ganz & 42-43 & 6 & gProbe-Nerve & 25 & 9 \\
\hline Forceps-vasectomy & 29 & 1 & Gelpi Retractor & 38-40 & 5-9 & gPunch-Ferris Smith Kerrison & 72 & 1-2 \\
\hline Forceps-Verbrugge & 46-47 & 9-11 & Gelpi Retractor-deep & 38-40 & 6-9 & gPunch-silicone handle & 72 & 1-2 \\
\hline Forefoot Set & 101 & 5 & Gelpi Retractor-Wiltse & 38-40 & 6 & gPunch-Spurling Kerrison & 70 & 8 \\
\hline Foreign Body Spud & 27 & 1 & Gelpi Seletz Retractor & 38-40 & 6 & gRack-Brun Curettes & 98-99 & 9 \\
\hline Fork-tuning & 11 & 1 & Gemini Forceps & 22 & 6 & gRack-K-Wire & 98-99 & 5-6 \\
\hline Four Chamber K-Wire/Pin Disp & 98-99 & 2 & Gerald Dressing Forceps & 19 & 2 & gRack-K-Wire and pin & 98-99 & 6 \\
\hline Four Fluted Twist Drill & 86-87 & 6 & Gerald Tissue Forceps & 17 & 3 & gRack-Lambotte osteotomes & 98-99 & 9 \\
\hline Fox Curette & 50 & 2 & Gerber Rotator Cuff Retractor & 38-40 & 18 & gRack-screwdriver bits & 98-99 & 7 \\
\hline Fracture Mgmt Instruments & 86-87 & 1-18 & Gerzog Mallet & 59 & 5 & gRack-SQC & 98-99 & 7 \\
\hline Fracture Mgmt Insts Guide & 86-87 & 17-18 & gExtractor-femoral head & 86-87 & 15 & Gradle Scissors & 13-14 & 2 \\
\hline Fragment Sets & 101 & 6-8 & gExtractor-screw & 86-87 & 15 & Graft Cutter & 38-40 & 24 \\
\hline Fragment-Large Set & 101 & 8 & gForceps-bone reduction & 46-47 & 6 & Graft Forceps-Aiach cartilage & 49 & 4 \\
\hline Fragment-Mini Set & 101 & 6 & gForceps-Lewin Bone & 46-47 & 7 & Graft Holder & 60 & 3 \\
\hline Fragment-Small Set & 101 & 7 & gGoniometer & 74 & 3 & Graft Holder-Caspar & 38-40 & 28 \\
\hline Frahm Lancet & 42-43 & 4 & gGouge-Tanaka & 56 & 3 & Graham Hook & 25 & 8 \\
\hline Frazier Dura Separator & 42-43 & 11 & gGraft Holder & 60 & 3 & gRasp & 61-62 & 9 \\
\hline Frazier Hook & 25 & 1 & gGrasper Rongeur & 67-68 & 12 & Grasper-ortho & 49 & 8 \\
\hline Frazier Suction Tube & 75-76 & 1 & gHandle-SQC & 86-87 & 9 & Grasper Rongeur & 67-68 & 12 \\
\hline Freeman Face Lift Retractor & 34-37 & 5-6 & Giertz-Stille Rib Shears & 64 & 1 & Grasping Forceps & 30 & 4-5 \\
\hline Freer Elevator & 42-43 & 7 & Gigli Saw Blade & 65 & 1 & Gratloch Wire Bender & 82 & 4 \\
\hline Freer Septum Chisel & 54 & 2 & Gigli Saw Handle & 65 & 1 & Green Retractor & 34-37 & 13 \\
\hline Freer Skin Hook & 25 & 4 & Gillies Forceps & 17 & 2 & gRetractor-Abramsohn & 38-40 & 20 \\
\hline French Gauge Scale & 75-76 & 3 & Gillies Hook & 25 & 3 & gRetractor-Aufranc Cobra & 34-37 & 41 \\
\hline Friedman Rongeur & 66 & 2 & glmpactor- Hibbs & 60 & 1 & gRetractor-Bent Hohmann & 34-37 & 43 \\
\hline Friedman Rongeur Micro & 66 & 1 & Glabella Rasp & 61-62 & 9 & gRetractor-deep Gelpi & 38-40 & 6 \\
\hline Friedman Rongeur Mini & 66 & 2 & Glenoid Neck Retractor & 34-37 & 29 & gRetractor-Harrington & 34-37 & 21 \\
\hline Fukuda-Kujat Retractor & 34-37 & 28 & Glenoid Perforating Forceps & 46-47 & 4 & gRetractor-Johnson neuroma & 38-40 & 3 \\
\hline Fukuda Style Retractor & 34-37 & 28 & Glenoid Punch & 44 & 2 & gRetractor-mini Hohmann & 34-37 & 2 \\
\hline G & & & gMallet-nylon caps & 59 & 4,8 & gRetractor-Rahner & 38-40 & 17 \\
\hline Ganz Elevator & 42-43 & 6 & gMallet-silicone handle & 59 & 4,8 & gRetractor-rotator cuff & 38-40 & 18 \\
\hline Gauge-depth & 86-87 & 12 & gMallet-slotted & 59 & 8 & gRetractor-Sandhu nerve root & 34-37 & 12 \\
\hline Gauge Scales & 75-76 & 3-4 & gNail Splitter-tapered jaw & 77 & 4 & gRetractor-shoulder & 34-37 & 26 \\
\hline Gauge-wire and pin & 74 & 4 & Goelet Retractor & 34-37 & 14 & gRetractor-trigger finger & 38-40 & 2 \\
\hline gAwl & 44 & 2 & Goldman-Fox Scissors & 13-14 & 3 & gRetractor-Weitlaner & 38-40 & 10 \\
\hline gClamp-bone fragment & 46-47 & 21 & Goldman-Fox Sciss-super-cut & 16 & 5 & gRod Bender-universal & 82 & 11 \\
\hline gCompressor-MIS & 38-40 & 26 & Goniometer & 74 & 2-3 & gRongeur-discectomy & 67-68 & 11 \\
\hline gCompressor-parallel & 38-40 & 26 & Gorney Scissors & 13-14 & 9 & Grooved Director & 11 & 2 \\
\hline gCurette-box & 51 & 15 & Gorney Suction Elevator & 26 & 4 & Gruenwald Ear Forceps & 26 & 1 \\
\hline gCurette-double handed & 51 & 9-10,15 & gOsteotome & 52-53 & 11 & gSeparator-Penelope & 25 & 6 \\
\hline gCurette-excavator & 50 & 1 & gOsteotome-Hibbs & 52-53 & 8 & gSilicone Brain Spatula & 34-37 & 2 \\
\hline gCurette-teardrop ring & 51 & 15 & Gouge Blade & 52-53 & 12 & gSilicone Cardan Screwdriver & 86-87 & 11 \\
\hline gCurette-triangle & 51 & 15 & Gouge for Screw Removal & 56 & 4 & gSilicone Punch & 72 & 1-2 \\
\hline gDissector & 42-43 & 6 & Gouge-Cobb & 56 & 5 & gSilicone Rod Shears & 83 & 15 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
description & section & page \\
\hline gSilicone Steinmann Chuck & 82 & 2 \\
gSpreader-calcaneal & \(38-40\) & 3 \\
Guide Fracture Mgmt Insts & \(86-87\) & \(17-18\) \\
Guthrie Hook & 25 & 4 \\
gWire Passer/Retriever Fcps & 82 & 23 \\
gWire Twister & 82 & 18 \\
H & & \\
Hajek Mallet & 59 & 3 \\
Hajek Septum Chisel & 54 & 2 \\
Halle Curette & 51 & 3 \\
Halsey Needle Holder & 21 & 1 \\
Halsted Mosquito Forceps & 22 & 2 \\
Hammer-neurological & 11 & 3 \\
Hammer-percussion & 11 & 4 \\
Hand Set & 101 & 9 \\
Hand-Held Retractors & \(34-37\) & \(1-56\) \\
Hand-lead & 11 & 1 \\
Handle-mini quick coupling & \(86-87\) & 9 \\
Handle-small quick coupling & \(86-87\) & 9 \\
Handles-punch silicone & 72 & \(1-2\) \\
Handles-scalpel & 12 & \(1-4\) \\
Handles-spinal punch & 70 & \(2-3\) \\
Handles-spinal rongeur & \(67-68\) & 1 \\
Hangnail Nipper & 77 & 1 \\
Hardy Bayonet Curette & 51 & 11 \\
Harrington Retractor & \(34-37\) & 21 \\
Harrington Retr-silicone hdl & \(34-37\) & 21 \\
Hartmann Alligator Forceps & 26 & 1 \\
Hartmann Mosquito Forceps & 22 & 1 \\
Hartmann Rongeur & 66 & 6 \\
Hayes Hand Retractor & \(34-37\) & 1 \\
Heaney Needle Holder & 21 & 4 \\
Heath Mallet & 59 & \(10-11\) \\
Heavy Duty Pliers & 81 & \(10-13\) \\
Heavy Jaw Nail Nipper & 77 & 7 \\
Heavy Mallet & 59 & 12 \\
Hegar-Baumgartner NH & 21 & 1 \\
Heiss Artery Forceps & 22 & 5 \\
Heiss Retractor & \(38-40\) & \(1-2\) \\
He-Man Mallet & 59 & 11 \\
Hemostatic Forceps & 22 & \(1-10\) \\
Henly Blade & \(38-40\) & 31 \\
Henly Retractor Handle & \(38-40\) & 31 \\
Hennig Plaster Spreader & 73 & 2 \\
Hercules Cutter & 83 & 8 \\
Hercules Scissors & 15 & 7 \\
Hex Bit-mini quick coupling & \(86-87\) & 7 \\
Hex Bit-small quick coupling & \(86-87\) & 7 \\
Hexagonal Screwdrivers & \(86-87\) & \(10-11\) \\
Hibbs Blade & \(38-40\) & 35 \\
Hibbs Bone Impactor & 60 & 1 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline description & section & page \\
\hline Hibbs Chisel & 54 & 5 \\
\hline Hibbs Gouge & 56 & 4 \\
\hline Hibbs Osteotome & 52-53 & 8 \\
\hline Hibbs Retractor & 34-37 & 38 \\
\hline Hi-Level Bandage Scissors & 15 & 4 \\
\hline Hi-Level Scissors-super-cut & 16 & 7 \\
\hline Hip Retractor Blade & 38-40 & 39 \\
\hline Hip Retractor Frame & 38-40 & 39 \\
\hline Hip-Basic, Total Set & 101 & 10 \\
\hline Hoen Dural Separator & 25 & 6 \\
\hline Hoen Elevator & 42-43 & 22 \\
\hline Hoen Grasping Forceps & 49 & 6 \\
\hline Hoen Nerve Hook & 25 & 7 \\
\hline Hohmann Retractor-large & 34-37 & 43-56 \\
\hline Hohmann Retractor-mini & 34-37 & 1-2 \\
\hline Hohmann Retractor-small & 34-37 & 1 \\
\hline Hoke Chisel & 54 & 2 \\
\hline Hoke Osteotome & 52-53 & 4 \\
\hline Holding Sleeve & 86-87 & 13 \\
\hline Hollenback Elev and Spatula & 42-43 & 2 \\
\hline Holscher Retractor & 34-37 & 11 \\
\hline Hook and Dissector & 42-43 & 13 \\
\hline Hook and Spatula & 42-43 & 4 \\
\hline Hook Knife & 30 & 1 \\
\hline Hook Probe & 30 & 2 \\
\hline Hook Punch & 30 & 7 \\
\hline Hook Scissors & 30 & 6 \\
\hline Hook-Millard thumb & 34-37 & 5 \\
\hline Hook-Rhoton & 33 & 1 \\
\hline Hook-sharp & 11 & 3 \\
\hline Hooks-bone & 45 & 1-2 \\
\hline Hooks-nerve & 25 & 7-8 \\
\hline Hooks-skin & 25 & 1-6 \\
\hline Horizontal Retractor & 38-40 & 16 \\
\hline House Stapes Curette & 50 & 5 \\
\hline Howarth Elevator & 42-43 & 9 \\
\hline Humeral Head Retractor & 34-37 & 27 \\
\hline Hunt Chalazion Forceps & 27 & 2 \\
\hline Hypophyseal Bayonet Forceps & S 17 & 8 \\
\hline l & & \\
\hline Ikuta Bone Clamp & 46-47 & 7 \\
\hline Impactor Forceps & 60 & 3 \\
\hline Impactors & 60 & 1-3 \\
\hline In Situ Rod Bender & 82 & 7 \\
\hline Infant Gouge & 56 & 2 \\
\hline Inge Retractor & 38-40 & 20 \\
\hline Ingrown Nail Shaver & 50 & 2 \\
\hline Ingrown Nail Splitter & 77 & 4 \\
\hline Ingrown Nail Splitting Scissors & 15 & 2 \\
\hline Initial Incision Blade & 38-40 & 38 \\
\hline Initial Incision Retractor & 38-40 & 38 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
description & section & page \\
\hline Insert Drill Sleeve & \(86-87\) & 4 \\
Inserts for Hercules Cutter & 83 & 8 \\
Inserts for Silicone Cutter & 83 & 5 \\
Inspection Guidelines & 100 & \(5-6\) \\
Instrument Care \& Cleaning & 100 & \(3-4\) \\
Instrument Case-small & \(98-99\) & 10 \\
Instrument Cleaning Brush & \(98-99\) & 4 \\
Instrument Holders & \(98-99\) & \(3-4\) \\
Instrument Racks & \(98-99\) & \(5-9\) \\
Instrument Set Listings & 101 & \(1-22\) \\
Instrument Stringers & \(98-99\) & 3 \\
Interchangeable Chisel Blade & \(52-53\) & 12 \\
Interchangeable Gouge Blade & \(52-53\) & 12 \\
Interchangeable Handle & \(52-53\) & 12 \\
Interchangeable Key & \(52-53\) & 12 \\
Interchangeable Osteo Blade & \(52-53\) & 12 \\
Internal Fixation-wire/pin & \(78-79\) & \(1-4\) \\
Iris Forceps & 27 & 3 \\
Iris Scissors & \(13-14\) & 1 \\
Iris Scissors-super-cut & 16 & 1 \\
Israel Retractor & \(34-37\) & 17 \\
IVD Rongeurs & \(67-68\) & \(1-10\) \\
IVD Rongeurs-CleanWave & \(67-68\) & \(2-4\) \\
J & & \\
Jackson Tracheal Hook & \(34-37\) & 3 \\
Jacobson Hemostatic Forceps & 22 & 5 \\
Jamison Scissors-super-cut & 16 & 5 \\
Jansen Curette & 50 & 6 \\
Jansen Ear Forceps & 26 & 1 \\
Jansen Retractor & \(38-40\) & 2 \\
Jansen Rongeur & 66 & 6 \\
Jaws for Pin Cutter & 83 & \(12-13\) \\
Jet Wire Twister & 82 & 20 \\
Jewelers Forceps-Swiss & 18 & 2 \\
Johnson Neuroma Retractor & \(38-40\) & 3 \\
Johnson Skin Hook & 25 & 2 \\
Johnson-Tucker Hook \& Fork & \(42-43\) & 5 \\
Kantrowitz Forceps & 101 & 11 \\
Joint-Basic, Total Set & 101 & \(12-13\) \\
Joint-Ortho, Small Set & \(42-43\) & 24 \\
Joker Elevator & \(7-14\) & 7 \\
Jones Dissecting Scissors & 20 & 3 \\
Jones Towel Forceps & \(13-14\) & 9 \\
Jorgenson Scissors & 65 & 2 \\
Joseph Bone Saw & \(42-43\) & 15 \\
Joseph Elevator & 25 & 5 \\
Joseph Hook & \(61-62\) & 6 \\
Joseph Rasp & \(42-43\) & 15 \\
Joseph Raspatory & 7 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline description se & section & page & cription se & section & page & scription & ectio & age \\
\hline Kelly Forceps & 22 & 3 & K-Wire and Pin Rack & 98-99 & 6 & Ligamentum Flavum Forceps & 49 & 4 \\
\hline Kelly Retractor & 34-37 & 19 & K-Wire and Plate Bender & 82 & 4 & Ligature Carrier & 82 & 21-22 \\
\hline Kelly Scissors & 13-14 & 8 & K-Wire Driver-Vickers & 82 & 2 & Lightweight Mallet-phenolic & 59 & 4 \\
\hline Kelly Sponge Fcps-bariatric & 20 & 2 & K-Wire Rack & 98-99 & 5-6 & Linde Retractor & 34-37 & 5 \\
\hline Kern Bone Forceps & 46-47 & 16 & K-Wire Ruler and Pin Gauge & 74 & 4 & Lineman Pliers & 81 & 8 \\
\hline Kerrison Handles & 70 & 2-3 & K-Wire-stainless & 78-79 & 1 & Lister Bandage Scissors & 15 & 4 \\
\hline Kerrison Mastoid Punch & 70 & 4 & K-Wire-titanium alloy & 78-79 & 3 & Lister Scissors-super-cut & 16 & 8 \\
\hline Kerrison Punch-Clean Wave & 69 & 5 & L & & & Liston Amputation Knife & 65 & 2 \\
\hline Kerrison Punch-Easy2Clean & 69 & 1-4 & Laborde Tracheal Dilator & 26 & 6 & Liston Bone Forceps & 63 & 2 \\
\hline Kerrison-thin foot plate & 71 & 1-2 & LaGrange Scissors-super-cut & 16 & 2 & Littauer Bone Forceps & 63 & 1 \\
\hline Key Elevator & 42-43 & 14 & Lahey Retractor & 34-37 & 9 & Littauer Cilia Forceps & 27 & 4 \\
\hline Key for Mallet & 59 & 7 & Lahey Skin Hook & 25 & 3 & Littauer Stitch Scissors & 15 & 2 \\
\hline Keyes Punch & 50 & 3 & Lahey Traction Forceps & 22 & 9 & Little Retractor & 34-37 & 9 \\
\hline Kilner Scissors-super-cut & 16 & 3 & Lambert-Lowman Bone Clamp & 46-47 & 19 & Littler Scissors & 13-14 & 3 \\
\hline Kirk Mallet & 59 & 9 & Lambotte Bone Forceps & 46-47 & 20 & Locke Elevator & 42-43 & 5 \\
\hline Kirmission Raspatory & 42-43 & 26 & Lambotte Osteotome & 52-53 & 1-3 & Locke Phalangeal Forceps & 46-47 & 5 \\
\hline Kirschner Bow & 82 & 24 & Lambotte Osteotome Rack & 98-99 & 9 & Locking Pliers & 81 & 10-13 \\
\hline Kirschner Wire-stainless & 78-79 & 1 & Lamina Spreader & 38-40 & 19,22 & Locking Pliers Needle Nose & 81 & 10,12 \\
\hline Kirschner Wire-Ti alloy & 78-79 & 3 & Laminectomy Retractor & 38-40 & 13 & Locking Pliers w/Slaphammer & 81 & 12-13 \\
\hline Kleinert-Kutz Elevator & 42-43 & 10 & Lancet-Frahm & 42-43 & 4 & Locking Rod Holder & 82 & 15 \\
\hline Kleinert-Kutz Forceps & 63 & 3 & Landolt Scalpel Handle & 12 & 1 & Long Bevel Osteotome & 52-53 & 1 \\
\hline Kleinert-Kutz Hook & 25 & 2 & Lane Bone Forceps & 46-47 & 17 & Long Jaw Nail Splitter & 77 & 3 \\
\hline Kleinert-Kutz Rasp & 61-62 & 10 & Lane Elevator & 42-43 & 16 & Long Jaw Pliers & 81 & 5 \\
\hline Kleinert-Kutz Rongeur & 66 & 8 & Lane Plate Bender & 82 & 6 & Lorna Towel Forceps & 20 & 3 \\
\hline Kleinert-Kutz Tendon Retriever & r 49 & 7 & Lange Hohmann Retractor & 34-37 & 50 & Loute Wire Tightener & 82 & 21 \\
\hline Knapp Iris Scissors & 13-14 & 1 & Lange Wound Approx Forceps & 17 & 3 & Love Gruenwald IVD Rongeur & 67-68 & 3,7 \\
\hline Knee Retractors & 34-37 & 33-37 & Langenbeck Bone Forceps & 46-47 & 16 & Love Kerrison Punch & 70 & 7 \\
\hline Knee Set & 101 & 14 & Langenbeck Elevator & 42-43 & 24 & Love Kerrison Punch TFP & 71 & 2 \\
\hline Knife-acetabular & 49 & 1 & Langenbeck Metacarpal Saw & 65 & 2 & Love Retractor & 34-37 & 10 \\
\hline Knife-amputation & 65 & 2 & Langenbeck Retractor & 34-37 & 9 & Lowman Bone Clamp & 46-47 & 18 \\
\hline Knife-arthroscopy & 30 & 1 & Large Fragment Set & 101 & 8 & Lucae Ear Dressing Forceps & 26 & 1 \\
\hline Knife-cartilage & 49 & 2 & Large Pin Cutter DA & 83 & 13-14 & Lucae Mallet & 59 & 2 \\
\hline Knife-corn & 12 & 4 & Large Pin Cutter-detach hdls & 83 & 14 & Luer "S" Retractor & 34-37 & 4 \\
\hline Knife-fistula & 12 & 5 & Large Ring Lister Scissors & 15 & 4 & Luer Rongeur & 66 & 4,7 \\
\hline Knife-meniscus & 49 & 1 & Large Ring Sciss-super-cut & 16 & 8 & Lumbar Lamina Spreader & 38-40 & 19 \\
\hline Knife-nucleus & 54 & 1 & Lead Hand & 11 & 1 & Lumbar Microdiscectomy & 33 & 4 \\
\hline Knife-plaster & 73 & 1 & Lebsche Sternum Chisel & 64 & 1 & Lumbar/Cervical Impactor & 60 & 2 \\
\hline Knife-Smillie & 49 & 1 & Left-Handed Bandage Scissors & s 15 & 4 & M & & \\
\hline Knight Nasal Scissors & 13-14 & 8 & Left-Handed Scissors & 13-14 & 1,4-6 & Magill Catheter Forceps & 20 & 1 \\
\hline Knowles Bandage Scissors & 15 & 4 & Leksell Rongeur & 66 & 12 & Malleable Retractor & 34-37 & 3 \\
\hline Kocher Forceps & 17 & 10 & Leksell-Stille Rongeur & 66 & 11 & Malleolar Forceps & 46-47 & 8 \\
\hline Kolbel Blade & 38-40 & 29 & Lempert Curette & 51 & 3 & Mallet \#49 & 59 & 2 \\
\hline Kolbel Glenoid Retractor & 34-37 & 30 & Lempert Elevator & 26 & 3 & Mallet-aluminum & 59 & 10 \\
\hline Kolbel Retractor Frame & 38-40 & 29 & Lempert Rongeur & 66 & 3 & Mallet-aluminum handle & 59 & 3,5-11 \\
\hline Kolbel Retractor Handle & 38-40 & 29 & Leriche Forceps & 22 & 3 & Mallet-nylon & 59 & 3-5,7-8 \\
\hline Kolbel Soft Tissue Retractor & 38-40 & 17 & Lewin Bone Forceps & 46-47 & 7 & Mallet-phenolic & 59 & 4,6 \\
\hline Kraemer Bayonet Curette & 51 & 11 & Lewis Rasp & 61-62 & 6 & Mallet-phenolic handle & 59 & 1,4-12 \\
\hline Krull Acetabular Knife & 49 & 1 & Lexer Chisel & 54 & 4 & Mallet-plastic handle & 59 & 8,10 \\
\hline Kuntscher Awl & 44 & 2 & Lexer Gouge & 56 & 5 & Mallets & 59 & 1-12 \\
\hline K-Wire and Pin Dispenser Cap & 98-99 & 1-2 & Lexer Osteotome & 52-53 & 10 & Mallet-silicone handle & 59 & 4,8 \\
\hline K-Wire and Pin Dispenser & 98-99 & 1-2 & Lid Retractor & 34-37 & 8 & Maltz Rasp & 61-62 & 5-6 \\
\hline
\end{tabular}

110/8 - alphabetical index
\begin{tabular}{lll} 
description & section & page \\
\hline Manual K-Wire Driver & 82 & 2 \\
Manual Pin Driver & 82 & 3 \\
Markham Meyerding Retractor & \(38-40\) & 13 \\
Marquardt Rongeur & 66 & 11 \\
Martin Cartilage Clamp & 49 & 5 \\
Martin Cartilage Scissors & 49 & 7 \\
Martini Curette & 50 & 6 \\
Masson Needle Holder & 21 & 4 \\
Mastoid Punch & 70 & 4 \\
Mastoid Retractor & \(38-40\) & 2 \\
Mathieu Needle Holder & 21 & 5 \\
Mathieu Retractor & \(34-37\) & 7 \\
Mayfield Rongeur & 66 & 9 \\
Mayo Hegar Needle Holder & 21 & 2 \\
Mayo Noble Scissors & \(13-14\) & 6 \\
Mayo Scissors & \(13-14\) & 6 \\
Mayo Scissors-super-cut & 16 & 4 \\
Mayo-Collins Retractor & \(34-37\) & 14 \\
Mayo-Harrington Scissors & \(13-14\) & 10 \\
Mayo-Stille Scissors & \(13-14\) & 6 \\
\hline McCulloch Blade & \(38-40\) & 30 \\
McCulloch Dissector & \(42-43\) & 8 \\
\hline McCulloch Retractor & \(38-40\) & 30 \\
McDonald Elevator & \(42-43\) & 8 \\
McGlamry Bullneck Curette & 50 & 2 \\
McGlamry Elevator & \(42-43\) & 6 \\
McIndoe Forceps & 63 & 5 \\
\hline McIndoe Scissors-super-cut & 16 & 6 \\
McKenty Elevator & \(42-43\) & 5 \\
Mead Mallet & 59 & 5 \\
\hline Mead Rongeur & 66 & 5 \\
Measurement Guidelines & 100 & 6 \\
Measuring & 74 & \(1-4\) \\
Meeker Artery Forceps & 22 & 7 \\
Meniscotome & 30 & \(1-2\) \\
Meniscotome-Smillie & 30 & \(1-2\) \\
Meniscus Knife & 49 & 1 \\
Metacarpal Saw & 65 & 2 \\
Metatarsal Elevator & \(42-43\) & 6 \\
Metatarsal Retractor & \(38-40\) & 4 \\
Metzenbaum Scissors & \(13-14\) & 5 \\
Metzenbaum Sciss-super-cut & 16 & 3 \\
Meyerding Blade & \(38-40\) & 34 \\
Meyerding Finger Retractor & \(34-37\) & 8 \\
Meyerding Laminectomy Retr & \(38-40\) & 13 \\
Meyerding Mallet & 59 & 10 \\
Meyerding Retractor & \(34-37\) & 39 \\
Meyerhoefer Curette & 27 & 2 \\
Michele Trephine & 65 & 1 \\
Micro Dissector-bayonet & 33 & 3 \\
Micro Friedman Rongeur & 66 & 1 \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline description S & section & page & description S & section & page \\
\hline Micro Hartmann Forceps & 22 & 1 & N & & \\
\hline Micro Instruments & 33 & 1-4 & Nail Nipper/Splitter Springs & 77 & 10 \\
\hline Micro Needle Holders & 24 & 1-2 & Nail Nippers & 77 & 5-9 \\
\hline Micro Penfield Dissector & 33 & 4 & Nail Pulling Forceps & 81 & 1 \\
\hline Micro Rongeur & 66 & 1 & Nail Rasp \#93 & 61-62 & 1 \\
\hline Microdiscectomy Bone Waxer & 33 & 2,4 & Nail Scissors & 13-14 & 3 \\
\hline Microdiscectomy-cervical & 33 & 2-3 & Nail Shaver-ingrown & 50 & 2 \\
\hline Microdiscectomy-cortical & 33 & 2 & Nail Splitter-hand tool & 54 & 1 \\
\hline Microdiscectomy Curette & 33 & 2-4 & Nail Splitters & 77 & 2-4 \\
\hline Microdiscectomy-lumbar & 33 & 4 & Nail Splitting Scissors & 15 & 2 \\
\hline Microdiscectomy Nerve Hook & 33 & 2,4 & Narrow Dressing Forceps & 19 & 1 \\
\hline Microdiscectomy Spine Probe & 33 & 4 & Narrow Jaw Nail Nipper & 77 & 6 \\
\hline Micro-Rhoton instruments & 33 & 1 & Narrow Nose Pliers & 81 & 6 \\
\hline Millard Thumb Hook & 34-37 & 5 & Narrow Nose Rod Holder & 82 & 14-15 \\
\hline Miller Colburn Bone File & 61-62 & 4-5 & Narrow Tip Mallet & 59 & 1 \\
\hline Mini Basket Forceps & 30 & 3 & Nasal Scissors & 13-14 & 8 \\
\hline Mini Biopsy Forceps & 30 & 3-4 & Needle Holders & 21 & 1-6 \\
\hline Mini Fragment Set & 101 & 6 & Needle Holders-micro & 24 & 1-2 \\
\hline Mini Friedman Rongeur & 66 & 2 & Needle Nose Locking Pliers & 81 & 11,13 \\
\hline Mini Hohmann Retractor & 34-37 & 1-2 & Needle Nose Pliers & 81 & 1-2,4-7 \\
\hline Mini Lambotte Osteotome & 52-53 & 1 & Needle Nose Universal Pliers & 81 & 7 \\
\hline Mini Lexer Chisel & 54 & 3 & Needle Pulling Forceps & 17 & 5 \\
\hline Mini Lexer Gouge & 56 & 2 & Needle-Rhoton & 33 & 1 \\
\hline Mini Mallet & 59 & 1 & Neivert Needle Holder & 21 & 5 \\
\hline Mini Plate Bending Iron & 82 & 5 & Nerve Elevator-Sachs & 42-43 & 13 \\
\hline Mini Plate Bending Pliers & 82 & 7 & Nerve Hook-microdiscectomy & 33 & 2,4 \\
\hline Mini Quick Coupling Bit & 86-87 & 7 & Nerve Hooks & 25 & 7-8 \\
\hline Mini Quick Coupling Handle & 86-87 & 9 & Nerve Probes & 25 & 9 \\
\hline Mini Scissors & 30 & 5 & Nerve Probes-ball end & 25 & 9 \\
\hline MIS Compressor & 38-40 & 26 & Nerve Retractor-Sandhu & 34-37 & 12 \\
\hline MIS Distractor & 38-40 & 26 & Nerve Root Retractor & 34-37 & 10-12 \\
\hline Miskimon Cerebellum Retractor & r 38-40 & 13 & Neuro Caliper & 74 & 2 \\
\hline Mixter Baby Forceps & 22 & 6 & Neuroma Retractor & 38-40 & 3 \\
\hline Mixter Forceps & 22 & 6,8 & Nippers-nail & 77 & 5-9 \\
\hline Moeltgen Goniometer & 74 & 2 & Nippers-tissue & 77 & 1 \\
\hline Moleskin Scissors & 15 & 7 & Niro Skin Hook & 25 & 3 \\
\hline Moleskin Scissors-super-cut & 16 & 8 & Non-perforating Towel Forceps & - 20 & 3-4 \\
\hline Mollison Retractor & 38-40 & 11 & Northbent Stitch Scissors & 15 & 1 \\
\hline Molt \#9 Elevator & 42-43 & 7 & Nucleus Knife & 54 & 1 \\
\hline Molt Mouth Gag & 26 & 6 & Nylon Brush & 98-99 & 4 \\
\hline Mosquito Forceps & 22 & 1-2 & Nylon Mallet & 59 & 3-5,7-8 \\
\hline Mouth Gag & 26 & 6 & Nylon/Steel Brush & 98-99 & 4 \\
\hline Muehling Raspatory & 42-43 & 25 & 0 & & \\
\hline Mueller Capsule Scissors & 49 & 7 & Ob-Gyn Instruments & 29 & 1-2 \\
\hline Mueller Rake Retractor & 34-37 & 18 & O'Connor Skin Hook & 25 & 2 \\
\hline Mueller Rectal Scissors & 13-14 & 10 & Oldberg IVD Rongeur & 67-68 & 10 \\
\hline Murphy Bone Skid & 34-37 & 42 & Ollier Retractor & 34-37 & 17 \\
\hline Murphy Retractor & 34-37 & 16 & Olsen Hegar Needle Holder & 21 & 5 \\
\hline Muscle Biopsy Clamp & 17 & 3 & Ombredanne Mallet & 59 & 9 \\
\hline Mycotic Nail Nipper & 77 & 8-9 & Operating Scissors & 13-14 & 4 \\
\hline Myoma Screw-Doyen & 29 & 2 & Operating Scissors-super-cut & 16 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline description & section & page & iption se & section & page & description & ection & page \\
\hline Ortho Grasper & 49 & 8 & Pennington Elevator & 42-43 & 9 & Pliers with screw lock & 81 & 5 \\
\hline Ortho Heavy Mallet & 59 & 10,12 & Pennington Tissue Forceps & 22 & 9 & Pliers-lineman & 81 & 8 \\
\hline Ortho Heavy Short Mallet & 59 & 10 & Percussion Awl & 44 & 2 & Pliers-plate bending & 82 & 7-8 \\
\hline Ortho Mallet & 59 & 7,10-12 & Percutaneous Fcps-phalangeal & 16-47 & 5 & Pliers-wire extraction & 81 & 8 \\
\hline Ortho Rongeur & 66 & 15 & Percy Amputation Shield & 65 & 3 & Plug Cutter & 65 & 1 \\
\hline Ortho Short Mallet & 59 & 7 & Perforating Forceps & 46-47 & 4 & Podiatry Nail Instruments & 77 & 1-10 \\
\hline Orthopedic-Major Set & 101 & 15-16 & Perforator-Fisch & 26 & 3 & Podiatry-Basic Set & 101 & 20 \\
\hline Orthopedic-Minor Set & 101 & 17-18 & Periarticular Reduction Forceps & s 46-47 & 23 & Podiatry-Nail Pack Set & 101 & 20 \\
\hline Osteotome-anterior lumbar & 52-53 & 11 & Periosteal Elevator & 42-43 & 18-21 & Pointed Drill Guide & 86-87 & 4 \\
\hline Osteotome Blade & 52-53 & 12 & Petit-Point Jacobson Forceps & 22 & 2 & Polk Finger Goniometer & 74 & 2 \\
\hline Osteotome-Cobb & 52-53 & 9 & Phalangeal Percutaneous Fcps & s 46-47 & 5 & Polokoff Rasp & 61-62 & 2 \\
\hline Osteotome-double handed & 52-53 & 11 & Phenolic Handle Heavy Mallet & 59 & 12 & Poole Suction Tube & 75-76 & 2 \\
\hline Osteotome-Hibbs & 52-53 & 8 & Phenolic Handle Mallets & 59 & 1,4-12 & Poppen Gigli Saw Guide & 65 & 2 \\
\hline Osteotome-Lambotte & 52-53 & 1-3 & Phenolic Lightweight Mallet & 59 & 4 & Posterior Cruciate Lig Retr & 34-37 & 36 \\
\hline Osteotome-mini Lambotte & 52-53 & 1 & Phenolic Mallet & 59 & 4,6 & Posterior Glenoid Neck Retr & 34-37 & 29 \\
\hline Osteotome-pelvic & 52-53 & 10 & Phillips Screwdriver & 86-87 & 9 & Post-Mortem Scalpel Handle & 12 & 4 \\
\hline Osteotomes & 52-53 & 1-12 & Pick-up Forceps & 17 & 1-8 & Potts-Smith Scissors & 13-14 & 8 \\
\hline Osteotomy Forceps-patella & 46-47 & 13-14 & Piffard Curette & 50 & 3 & Potts-Smith Scissors-super-cut & 16 & 7 \\
\hline P & & & Pin and Wire Bender & 82 & 3 & Potts-Smith Tissue Forceps & 17 & 2 \\
\hline Packer and Excavator & 42-43 & 1 & Pin Chuck & 82 & 1-2 & Power Drill Adaptor QC & 86-87 & 13 \\
\hline Packer and Probe & 42-43 & 1 & Pin Cutter-double action & 83 & 7-14 & Pratt Scalp Forceps & 22 & 10 \\
\hline Packer and Separator & 42-43 & 11 & Pin Cutters & 83 & 6-14 & Presbyterian Hospital Elevator & 42-43 & 8 \\
\hline Packer and Spatula & 42-43 & 1-2 & Pin Cutter-silicone inserts & 83 & 8 & Presbyterian Tubing Forceps & 20 & 1 \\
\hline Packer-bone chip & 60 & 3 & Pin Dispenser & 98-99 & 1-2 & Press-plate bending & 82 & 9 \\
\hline Parallel Compressor & 38-40 & 26 & Pin Extraction Pliers & 81 & 5 & Preston Ligamentum Forceps & 49 & 4 \\
\hline Parallel Distractor & 38-40 & 26 & Pin Gauge & 74 & 4 & Probe & 11 & 2 \\
\hline Parallel Drill Guide/Sleeve & 86-87 & 4 & Pin Puller & 82 & 3 & Probe and Excavator & 42-43 & 1 \\
\hline Parallel Pliers & 81 & 9 & Pin Puller Pliers & 81 & 5 & Probe and Packer & 42-43 & 1 \\
\hline Parallel Pliers with cutter & 81 & 9 & Pin Removal Set & 101 & 18 & Probe-anterior lumbar & 25 & 9 \\
\hline Parker Retractor & 34-37 & 13-14 & Pin Shears DA & 83 & 10 & Probe-arthroscopy & 30 & 2 \\
\hline Parker-Mott Retractor & 34-37 & 14 & Pin Wheel-Wartenberg & 11 & 3 & Probe-ball end & 25 & 9 \\
\hline Partsch Gouge & 56 & 1 & Pin-Steinmann & 78-79 & 2 & Probe-Bowman & 27 & 1 \\
\hline Partsch Mallet & 59 & 3 & Plain Splinter Forceps & 18 & 1 & Probe-microdiscectomy & 33 & 4 \\
\hline Patella Forceps & 46-47 & 12 & Plaster Cast Breaker & 73 & 1 & Probe-nerve & 25 & 9 \\
\hline Patella Osteotomy Forceps & 46-47 & 13-14 & Plaster Cutting Scissors & 15 & 5-6 & Providence Hospital Forceps & 22 & 2 \\
\hline PCL Retractor & 34-37 & 36 & Plaster Knife & 73 & 1 & Punch-anterior lumbar & 70 & 8 \\
\hline Pean Forceps & 22 & 4 & Plaster Spreader & 73 & 2 & Punch-arthroscopy & 30 & 7 \\
\hline Peapod IVD Rongeur & 67-68 & 5 & Plastic Handle Scissors & 15 & 6 & Punch-CleanWave Kerrison & 69 & 5 \\
\hline Peck Joseph Sciss-super-cut & 16 & 5 & Plastic Surgery Scissors & 13-14 & 2 & Punch-Easy2Clean Kerrison & 69 & 1-4 \\
\hline Pediatric Cast Breaker & 73 & 1 & Plastic Surgery Sciss-super-cut & t 16 & 2,5 & Punch-gSilicone & 72 & 1-2 \\
\hline Peers Towel Forceps & 20 & 4 & Plate and Bone Holding Fcps & 46-47 & 1-28 & Punch-Keyes & 50 & 3 \\
\hline Peet Splinter Forceps & 18 & 2 & Plate Bender & 82 & 4-9 & Punch-silicone handle & 72 & 1-2 \\
\hline Pelvic Osteotome & 52-53 & 10 & Plate Bending Iron & 82 & 5-6 & Punch-Spurling Kerrison & 70 & 6,8 \\
\hline Pelvic Reduction Forceps & 46-47 & 22-28 & Plate Bending Pliers & 82 & 7-8 & Punches-spinal & 70 & 1-8 \\
\hline Pelvic Retractor & 34-37 & 42 & Plate Bending Press & 82 & 9 & Punches-thin foot plate & 71 & 1-2 \\
\hline Pelvic Set & 101 & 19 & Plate Cutter & 83 & 9 & Putti Bone Rasp & 61-62 & 11 \\
\hline Penelope Separator & 25 & 6 & Plate Holding Forceps & 46-47 & 1,12 & Q & & \\
\hline Penetrating Awl & 44 & 2 & Plate Management & 82 & 4-9 & Quick Coupling Ball Spike & 86-87 & 16 \\
\hline Penetrating Gouge & 56 & 3 & Platypus Nail Pulling Forceps & 81 & 1 & Quick Coupling Bits & 86-87 & 5-7 \\
\hline Penfield Dissector-micro & 33 & 4 & Pliers & 81 & 1-14 & Quick Coupling Handles & 86-87 & 9 \\
\hline Penfield Elevator & 42-43 & 12-13 & Pliers with cutter & 81 & 3-4,6-9 & Quick Coupling Handlel-cann & 86-87 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline description s & section & page & description & section & page & description & section & page \\
\hline R & & & Retractor-Volkmann small & 34-37 & 7 & Ruler-X-ray & 74 & 4 \\
\hline Rack-Brun curettes & 98-99 & 9 & Retractor-Weitlaner & 38-40 & 10-15 & Rumel Dissecting Forceps & 22 & 7 \\
\hline Rack-K-Wire & 98-99 & 5-6 & Retractor-Wiltse Gelpi & 38-40 & 6 & Ruskin Liston Forceps & 63 & 3-4 \\
\hline Rack-K-Wire and pin & 98-99 & 6 & Retrograde Knife & 30 & 1 & Ruskin Rongeur & 66 & 9-11 \\
\hline Rack-Lambotte osteotomes & 98-99 & 9 & Reynolds Scissors & 13-14 & 8 & Ruskin-Rowland Forceps & 63 & 4 \\
\hline Rack-screwdriver bits & 98-99 & 7 & Rhoton Ball Dissector & 33 & 1 & Russian Tissue Forceps & 17 & 7 \\
\hline Rack-SQC drills & 98-99 & 7 & Rhoton Curette & 33 & 1 & Ryder Needle Holder & 21 & 3 \\
\hline Rack-twist drills & 98-99 & 7-8 & Rhoton Elevator & 33 & 1 & S & & \\
\hline Ragnell Retractor & 34-37 & 5 & Rhoton Hook & 33 & 1 & S Retractor & 34-37 & 4 \\
\hline Ragnell Scissors & 13-14 & 3 & Rhoton Needle & 33 & 1 & Saalfeld Comedone Extractor & 50 & 4 \\
\hline Ragnell-Linde Retractor & 34-37 & 5 & Rhoton Round Dissector & 33 & 1 & Sachs Nerve Elevator & 42-43 & 13 \\
\hline Rahner Retractor & 38-40 & 17 & Rhoton Spatula Dissector & 33 & 1 & Sandhu Nerve Root Retractor & 34-37 & 12 \\
\hline Rake Retractor & 34-37 & 18 & Rib Elevator & 42-43 & 37 & Sarot Needle Holder & 21 & 4 \\
\hline Rampley Sponge Forceps & 20 & 1 & Rib Raspatory & 42-43 & 27 & Satterlee Bone Saw & 65 & 3 \\
\hline Ranawat Knee Retractor & 34-37 & 37 & Rib Shears & 64 & 1-2 & Sauerbruch Retractor & 34-37 & 19 \\
\hline Raney Clip Applying Forceps & 23 & 1 & Rib Spreader & 38-40 & 35-37 & Sauerbruch Rongeur & 66 & 16 \\
\hline Rankin-Crile Forceps & 22 & 4 & Ribbon Retractor & 34-37 & 3 & Saxena-Style Retractor & 38-40 & 21 \\
\hline Rankin-Kelly Forceps & 22 & 4 & Richardson Eastman Retractor & 34-37 & 16 & Sayre Elevator & 42-43 & 6 \\
\hline Rasp \#64 & 61-62 & 1 & Richardson Retractor & 34-37 & 19 & Scalp Contour Retractor & 38-40 & 10 \\
\hline Rasp-anterior lumbar & 61-62 & 9 & Rigby Retractor & 38-40 & 4 & Scalpel Handles & 12 & 1-4 \\
\hline Rasp-bone & 61-62 & 1-11 & Rigid Retractor & 25 & 5 & Scalpel Knife & 30 & 1 \\
\hline Rasp-double handed & 61-62 & 9 & Ring Curette & 51 & 11-14 & Schamberg Comedone Extracto & or50 & 4 \\
\hline Rasp-downcutting & 61-62 & 4-9 & Ring Curette-arthroscopy & 30 & 2 & Schink Retractor & 38-40 & 4 \\
\hline Rasp-Maltz & 61-62 & 5-6 & Ring Cutter-finger & 11 & 4 & Schlesinger IVD Rongeur & 67-68 & 9 \\
\hline Rasp-nail & 61-62 & 1 & Rochester Ochsner Forceps & 17 & 10 & Schnidt Forceps & 22 & 9 \\
\hline Rasp-Putti bone & 61-62 & 11 & Rochester Pean Forceps & 22 & 4 & Schuknecht Retractor & 38-40 & 11 \\
\hline Raspatory & 42-43 & 15-27 & Rochester-Carmalt Forceps & 22 & 8 & Scissor Forceps & 15 & 7 \\
\hline Raspatory-Duckbill Shambaugh & h 26 & 4 & Rod Bender & 82 & 7,10 & Scissors & 13-14 & 1-10 \\
\hline Rat Tooth Rongeur & 66 & 7 & Rod Cutter-table top & 83 & 16 & Scissors-arthroscopy & 30 & 5-6 \\
\hline Rectal Scissors & 13-14 & 10 & Rod Gripper & 82 & 13 & Scissors-bandage & 15 & 4-8 \\
\hline Regular foot plate punches & 70 & 1-8 & Rod Holder & 82 & 12-15 & Scissors-cartilage & 49 & 7 \\
\hline Reill Reduction Forceps & 46-47 & 5 & Rod Management & 82 & 6-15 & Scissors-crown \& collar & 83 & 1 \\
\hline Reiner Plaster Knife & 73 & 1 & Rod Shears & 83 & 15-16 & Scissors-dissecting & 13-14 & 7 \\
\hline Reiner Rongeur & 66 & 5 & Rollet Retractor & 25 & 4 & Scissors-stitch & 15 & 1-2 \\
\hline Repercussion Free Mallet & 59 & 8 & Rongeur-anterior lumbar & 67-68 & 11 & Scissors-super-cut & 16 & 1-8 \\
\hline Replace Cap-K-Wire Dispenser & 98-99 & 1-2 & Rongeur-bone & 66 & 1-16 & Scissors-umbilical & 29 & 1 \\
\hline Replace Jaws-Pin Cutter & 83 & 12-13 & Rongeur-CleanWave spinal & 67-68 & 2-4 & Scissors-wire cutting & 83 & 1 \\
\hline Replace silicone inserts & 83 & 5 & Rongeur-discectomy & 67-68 & 11 & Scoville Blade & 38-40 & 34 \\
\hline Replace springs-nail insts & 77 & 10 & Rongeur-IVD & 67-68 & 1-10 & Scoville Curette & 51 & 5 \\
\hline Retractor-Aufranc Cobra & 34-37 & 40-41 & Rongeur-micro & 66 & 1 & Scoville Hook & 38-40 & 34 \\
\hline Retractor-discectomy & 38-40 & 14 & Rongeur-spinal & 67-68 & 1-12 & Scoville Nerve Retractor & 34-37 & 11 \\
\hline Retractor-double hinged & 38-40 & 32 & Rongeur-Sypert & 66 & 14 & Scoville Retractor & 38-40 & 34 \\
\hline Retractor-hand-held & 34-37 & 1-56 & Roos First Rib Shears & 64 & 1 & Scoville-Haverfield Retractor & 38-40 & 34 \\
\hline Retractor-Harrington & 34-37 & 21 & Rose Retractor & 34-37 & 4 & Screw Extractor & 86-87 & 15 \\
\hline Retractor-Hohmann bent & 34-37 & 43-44 & Rosen Suction Tube & 75-76 & 2 & Screw Holding Forceps & 86-87 & 14 \\
\hline Retractor-nerve root & 34-37 & 10-12 & Rosetta Knife & 30 & 1 & Screw Holding Sleeves & 86-87 & 13 \\
\hline Retractor-ribbon & 34-37 & 3 & Rotator Cuff Retractor & 38-40 & 18 & Screw Removal Gouge & 56 & 4 \\
\hline Retractor-shoulder & 34-37 & 26-31 & Round Nose Pliers & 81 & 1 & Screw/Pin Removing Pliers & 81 & 5 \\
\hline Retractor-self-retaining & 38-40 & 1-40 & Ruler & 74 & 4 & Screwdriver Bit Rack & 98-99 & 7 \\
\hline Retractor-vein & 34-37 & 12,22 & Ruler and Pin Gauge & 74 & 4 & Screwdriver Bits & 86-87 & 7 \\
\hline Retractor-Volkmann large & 34-37 & 17-18 & Ruler Holder/Handle & 74 & 4 & Screwdriver-distraction & 38-40 & 28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline d & section & page & description & section & page & description & section & page \\
\hline Screwdrivers & 86-87 & 9-11 & Short Jaw Nail Splitter & 77 & 3 & Spencer Stitch Scissors & 15 & 1 \\
\hline Screws-distraction & 38-40 & 28 & Shortbent Stitch Scissors & 15 & 1 & Spiked Disc & 86-87 & 16 \\
\hline Sedillot Elevator & 42-43 & 22 & Shoulder Penetrating Awl & 44 & 2 & Spinal Fusion Chisel & 54 & 6 \\
\hline Seigel Scalpel Handle & 12 & 2 & Shoulder Penetrating Gouge & 56 & 3 & Spinal Fusion Curette & 51 & 6 \\
\hline Self-Retaining Retractors & 38-40 & 1-40 & Shoulder Percussion Awl & 44 & 1 & Spinal Punches & 70 & 1-8 \\
\hline Selverstone Rongeur & 67-68 & 5 & Shoulder Retractor-rotator cuff & 38-40 & 18 & Spinal Punches-anterior lumbar & & 8 \\
\hline Semb Bone Forceps & 46-47 & 15 & Shoulder Retractors & 34-37 & 26-31 & Spinal Punches-gPunch & 70 & 8 \\
\hline Semb Periosteal Elevator & 42-43 & 22-23 & Shoulder Set & 101 & 21 & Spinal Punches-gSilicone & 72 & 1-2 \\
\hline Semb Rongeur & 66 & 15 & Sickle Knife & 30 & 1 & Spinal Punches-silicone handle & 72 & 1-2 \\
\hline Semken Dressing Forceps & 19 & 1 & Side Pin Cutter DA & 83 & 8,10-14 & Spinal Punches-TFP & 71 & 1-2 \\
\hline Semken Tissue Forceps & 17 & 1 & Side Wire Cutter & 83 & 2-4 & Spinal Retractor & 34-37 & 32 \\
\hline Semmes Ring Curette & 51 & 12 & Side Wire Cutter DA & 83 & 3-5,7 & Spinal Rod Cutter & 83 & 15-16 \\
\hline Senn Retractor & 34-37 & 7 & Silicone Handle Mallet & 59 & 4,8 & Spinal Rod Shears & 83 & 15-16 \\
\hline Separator and Packer & 42-43 & 11 & Silicone Handle Punch & 72 & 1-2 & Spine-anterior lumbar set & 101 & 22 \\
\hline Separator-Penelope & 25 & 6 & Silicone inserts & 83 & 5, 8 & Splinter Forceps & 18 & 1-2 \\
\hline Septum Chisel & 54 & 2 & Silver Osteotome & 52-53 & 6 & Splitters-nail & 77 & 2-4 \\
\hline Sesamoidectomy Clamp & 46-47 & 8 & Single Slot Screwdriver & 86-87 & 9 & Sponge Forceps & 20 & 1-2 \\
\hline Set Listings & 101 & 1-22 & Singley Tissue Forceps & 17 & 7 & Spratt Curette & 51 & 1 \\
\hline Set-amputation & 101 & 2 & Singley Tuttle Tissue Forceps & 17 & 8 & Spreader-bayoneted & 38-40 & 23 \\
\hline Set-bone graft & 101 & 2 & Sistrunk Scissors & 13-14 & 7 & Spreader-calcaneal & 38-40 & 3 \\
\hline Set-bone holding, large & 101 & 3 & Skin Hooks & 25 & 1-6 & Spreader-Caspar cervical & 38-40 & 33 \\
\hline Set-bone holding, small & 101 & 3 & Slaphammer for pliers & 81 & 12-13 & Spreader-vertebra & 38-40 & 18 \\
\hline Set-bone, large & 101 & 4 & Sleeves-screw holding & 86-87 & 13 & Springs-replace-nail insts & 77 & 10 \\
\hline Set-bone, small & 101 & 4 & Slip Joint Pliers & 81 & 7 & Spud and Needle & 27 & 1 \\
\hline Set-forefoot & 101 & 5 & Slotted Mallet & 59 & 8 & Spurling IVD Rongeur & 67-68 & 4,8 \\
\hline Set-fragment, large & 101 & 8 & Sluder-Jansen Mouth Gag & 26 & 6 & Spurling Kerrison Punch & 70 & 6,8 \\
\hline Set-fragment, mini & 101 & 6 & Small Fragment Set & 101 & 7 & Spurling Kerrison Punch TFP & 71 & 1 \\
\hline Set-fragment, small & 101 & 7 & Small Plate Bending Iron & 82 & 5 & Spurling Kerrison-gPunch & 70 & 8 \\
\hline Set-hand & 101 & 9 & Small Quick Coupling Bits & 86-87 & 5-7 & SQC Drill Bit & 86-87 & 5-6 \\
\hline Set-hip, basic total & 101 & 10 & Small Quick Coupling Handle & 86-87 & 9 & SQC Rack-screwdriver bits & 98-99 & 7 \\
\hline Set-joint, basic total & 101 & 11 & Small Quick Coupling Rack & 98-99 & 7 & SQC Rack-twist drills & 98-99 & 7-8 \\
\hline Set-joint, ortho small & 101 & 12-13 & Smillie Knife & 49 & 1 & St. Mark's Pelvic Retractor & 34-37 & 42 \\
\hline Set-knee & 101 & 14 & Smillie Meniscotome & 30 & 1-2 & Stagbeetle Forceps & 46-47 & 1 \\
\hline Set-orthopedic, major & 101 & 15-16 & Smillie Retractor & 34-37 & 32-33 & Standard Plate Bending Iron & 82 & 6 \\
\hline Set-orthopedic, minor & 101 & 17-18 & Smith Peterson Gouge & 56 & 3 & Standard Scissors-arthroscopy & 30 & 6 \\
\hline Set-pelvic & 101 & 19 & Smith Peterson Osteotome & 52-53 & 7 & Standard Wire Gauge Scale & 75-76 & 4 \\
\hline Set-pin removal & 101 & 18 & Smith Peterson Rongeur & 66 & 13 & Star Bit-quick coupling & 86-87 & 7 \\
\hline Set-podiatry basic & 101 & 20 & Smithwick Button Hook & 25 & 8 & Steel Brush & 98-99 & 4 \\
\hline Set-podiatry nail pack & 101 & 20 & Smithwick Hook and Dissector & 42-43 & 13 & Steel/Nylon Brush & 98-99 & 4 \\
\hline Set-shoulder & 101 & 21 & Snook Hook & 29 & 2 & Steinmann Pin & 78-79 & 2 \\
\hline Set-spinal, anterior lumbar & 101 & 22 & Socket Wrench & 86-87 & 15 & Steinmann Pin Chuck & 82 & 1-2 \\
\hline Seven Step Wire Bender & 82 & 3 & Sofield Retractor Set & 34-37 & 15 & Steinmann Pin Chuck-key & 82 & 1-2 \\
\hline Sexton Horizontal Retractor & 38-40 & 16 & Soft Corn Knife & 12 & 4 & Steinmann Pin Dispenser & 98-99 & 1-2 \\
\hline Shapleigh Ear Curette & 26 & 2 & Spatula & 42-43 & 1-4,11 & Stellbrink Rongeur & 66 & 1 \\
\hline Sharp Hook & 11 & 3 & Spatula-brain & 34-37 & 2-3 & Sternum Chisel & 64 & 1 \\
\hline Shear Cutter/Wire Twister & 82 & 18 & Spatula-Varady & 42-43 & 3 & Stevens Tenotomy Scissors & 13-14 & 2 \\
\hline Shears & 15 & 5,7 & Spatula and Chisel & 42-43 & 2 & Stevens Tenotomy-super-cut & 16 & 1 \\
\hline Shears-pin & 83 & 10 & Spatula and Elevator & 42-43 & 2,11 & Stille Osteotome & 52-53 & 7 \\
\hline Shears-rib & 64 & 1-2 & Spatula and Hook & 42-43 & 4 & Stille Ruskin Rongeur & 66 & 13 \\
\hline Shears-rod & 83 & 15-16 & Spatula and Packer & 42-43 & 1-2 & Stille Type Chisel & 54 & 5 \\
\hline Sheehan Osteotome & 52-53 & 4 & Speculum-Vienna & 26 & 5 & Stille-Horsley Forceps & 63 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline description s & section & page & description & section & page & description & section & page \\
\hline Stille-Liston Forceps & 63 & 6 & Taps & 86-87 & 8 & Twister-wire & 82 & 16-20 \\
\hline Stille-Luer Rongeur & 66 & 13-15 & Taylor Laminectomy Blade & 38-40 & 35 & Tyrell Hook & 25 & 1 \\
\hline Stitch Scissors & 15 & 1-2 & Taylor Percussion Hammer & 11 & 4 & U & & \\
\hline Strabismus Scissors & 13-14 & 2 & Taylor Spinal Blade & 38-40 & 35 & Ulich Bone Forceps & 46-47 & 19 \\
\hline Strabismus Sciss-super-cut & 16 & 2 & Taylor Spinal Retractor & 34-37 & 32 & Ulrich Fistula Knife & 12 & 5 \\
\hline Straight Ball Spike & 86-87 & 16 & Teardrop Ring Curette & 51 & 15 & Umbilical Scissors & 29 & 1 \\
\hline Straight Nose Rod Holder & 82 & 14 & Tendon Passer & 49 & 4 & Universal Bending Pliers & 81 & 3 \\
\hline Stringer-instrument & 98-99 & 3 & Tendon Pulling Forceps & 49 & 6 & Universal Chuck & 82 & 1 \\
\hline Stylet-cleaning & 98-99 & 4 & Tendon Retrieving Forceps & 49 & 7 & Universal Drill Guide & 86-87 & 3 \\
\hline Suction Elevator-Gorney & 26 & 3 & Tendon Stripper & 49 & 2-3 & Universal Needle Nose Pliers & 81 & 7 \\
\hline Suction Tubes & 75-76 & 1-4 & Tenotomy Scissors & 13-14 & 2 & Universal Pliers & 81 & 7 \\
\hline Super-Cut Baby Metz Scissors & 16 & 3 & Tenotomy Scissors-super-cut & 16 & 1 & Universal Rod Bender & 82 & 10-11 \\
\hline Super-Cut Bandage Scissors & 16 & 7-8 & Tension Device & 86-87 & 13 & Unna Comedone Extractor & 50 & 4 \\
\hline Super-Cut Goldman-Fox Sciss & 16 & 5 & Termite Forceps & 46-47 & 1 & US Army Navy Retractor & 34-37 & 16 \\
\hline Super-Cut Hi-Level Scissors & 16 & 7 & T-handle blade & 38-40 & 39 & U-shaped Instrument Stringer & 98-99 & 3 \\
\hline Super-Cut Iris Scissors & 16 & 1 & T-Handle Bone Curette & 51 & 9 & Utility Scissors & 15 & 6 \\
\hline Super-Cut Jamison Scissors & 16 & 5 & T-Handle Bone Hook & 45 & 1 & Utility Shears & 15 & 7 \\
\hline Super-Cut Kilner Scissors & 16 & 3 & T-Handle Retractor & 34-37 & 38 & V & & \\
\hline Super-Cut LaGrange Scissors & 16 & 2 & T-Handle-screw sets SQC & 86-87 & 9 & Van Buren Bone Forceps & 46-47 & 15 \\
\hline Super-Cut Lister Scissors & 16 & 8 & Thin Foot Plate Punches & 71 & 1-2 & Vanderbilt Vessel Forceps & 22 & 8 \\
\hline Super-Cut Mayo Scissors & 16 & 4 & Thin Foot Plate-Clean Wave & 69 & 5 & Varady Extractor & 42-43 & 4 \\
\hline Super-Cut McIndoe Scissors & 16 & 6 & Thin Foot Plate-Easy2Clean & 69 & 1-4 & Varady Spatula & 42-43 & 3 \\
\hline Super-Cut Metzenbaum Sciss & 16 & 3 & Thin Line Nail Splitter & 77 & 2 & Vascular Forceps & 17 & 5 \\
\hline Super-Cut Moleskin Scissors & 16 & 8 & Thoms Tissue Forceps & 17 & 9 & Vascular Scissors & 13-14 & 8-9 \\
\hline Super-Cut Operating Scissors & 16 & 4 & Three Fluted Twist Drill & 86-87 & 5-6 & Vasectomy Forceps & 29 & 1 \\
\hline Super-Cut Peck Joseph Sciss & 16 & 5 & Tibial Retractor & 34-37 & 35 & Vein Retractor & 34-37 & 12,22 \\
\hline Super-Cut Potts-Smith Scissors & s 16 & 7 & Tip for Bone Impactor & 60 & 1 & Verbrugge Forceps & 46-47 & 9-11 \\
\hline Super-Cut Scissors & 16 & 1-8 & Tissue Forceps & 17 & 1-10 & Vertebra Distractor & 38-40 & 25 \\
\hline Super-Cut Stevens Scissors & 16 & 1 & Tissue Forceps-Adson & 17 & 4-5 & Vertebra Spreader & 38-40 & 18 \\
\hline Super-Cut Strabismus Scissors & s 16 & 2 & Tissue Nippers & 77 & 1 & Verucca Curette Excavator & 50 & 2 \\
\hline Super-Cut Toennis Scissors & 16 & 6 & Toennis Scissors-super-cut & 16 & 6 & Vickers K-Wire Driver & 82 & 2 \\
\hline Super-Cut Turmspitz Scissors & 16 & 2 & Tohoku-Japan Towel Forceps & 20 & 4 & Vienna Speculum & 26 & 5 \\
\hline Super-Cut Wagner Scissors & 16 & 2 & Tooth Curette & 51 & 10 & Virtus Splinter Forceps & 18 & 1 \\
\hline Super-Cut Waldmann Scissors & 16 & 6 & Towel Forceps & 20 & 3-4 & Volkmann Bone Hook & 45 & 1 \\
\hline Surgical Blade Remover & 12 & 4 & Townley Caliper & 74 & 1 & Volkmann Curette-double end & 51 & 1 \\
\hline Suture Cutter & 15 & 3 & Tracheal Dilator & 26 & 6 & Volkmann Long Curette & 51 & 6 \\
\hline Suture Forceps & 17 & 7 & Tracheal Hook-Jackson & 34-37 & 3 & Volkmann Retractor & 34-37 & 7,17-18 \\
\hline Suture Management & 82 & 21-22 & Trephines & 65 & 1 & W & & \\
\hline Suture Passer & 82 & 21-22 & Triangle Curette & 51 & 15 & Wagner Elevator & 42-43 & 37 \\
\hline Swan Neck Gouge & 56 & 4 & Trigger Finger Retractor & 38-40 & 2 & Wagner Gouge & 56 & 6 \\
\hline Swiss Jewelers Forceps & 18 & 2 & Trousseau Dilator & 26 & 6 & Wagner Hohmann Retractor & 34-37 & 47 \\
\hline Sypert Rongeur & 66 & 14 & Tubing Forceps & 20 & 1 & Wagner Scissors-super-cut & 16 & 2 \\
\hline T & & & Tuffier Rib Spreader & 38-40 & 36 & Waldmann Scissors-super-cut & 16 & 6 \\
\hline Table Clamp-bone mill & 84 & 1 & Tungsten Carbide NH & 21 & 1-6 & Walton Cartilage Clamp & 49 & 5 \\
\hline Table Top Rod Cutter & 83 & 16 & Tungsten Carbide Scissors & 13-14 & 1-2,5-8 & Walton Cast Spreader & 73 & 2 \\
\hline Takahashi IVD Rongeur & 67-68 & 6 & Tungsten Carbide Wire Cut & 83 & 1-7 & Walton Comedone Extractor & 50 & 5 \\
\hline Tamps-bone & 60 & 1-4 & Tuning Fork & 11 & 1 & Wartenberg Pin Wheel & 11 & 3 \\
\hline Tanaka Gouge & 56 & 3 & Turmspitz Scissors-super-cut & 16 & 2 & Watson Cheyne Elevator & 42-43 & 8 \\
\hline Tap Sleeve & 86-87 & 1 & Twist Drill Bits & 86-87 & 6 & Webster Needle Holder & 21 & 1 \\
\hline Tapered Jaw Nail Splitter & 77 & 2,4 & Twist Drill Rack & 98-99 & 7-8 & Weinstein Instrument Holder & 98-99 & 3 \\
\hline Tapered Pliers & 81 & 7 & Twist Drill-distraction screws & 38-40 & 28 & Weitlaner Retractor & 38-40 & 10-15 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline description s & section & page \\
\hline Weston Spatula and Chisel & 42-43 & 2 \\
\hline Wiener Skin Hook & 25 & 2 \\
\hline Wilde Ear Dressing Forceps & 26 & 1 \\
\hline Williams Discectomy Retractor & r 38-40 & 14 \\
\hline Williams Splinter Forceps & 18 & 2 \\
\hline Williger Bone Elevator & 42-43 & 15 \\
\hline Williger Curette & 50 & 6 \\
\hline Wiltse Gelpi Retractor & 38-40 & 6 \\
\hline Wire and Pin Bender & 82 & 3 \\
\hline Wire and Pin Cutters & 83 & 1-14 \\
\hline Wire and Pin Management & 82 & 1-23 \\
\hline Wire Bending Iron & 82 & 5 \\
\hline Wire Bending Pliers & 81 & 3-4 \\
\hline Wire Bending Pliers w/cutter & 81 & 4 \\
\hline Wire Cutter-silicone inserts & 83 & 5 \\
\hline Wire Cutter/Twister & 82 & 18-19 \\
\hline Wire Cutters & 83 & 1-7 \\
\hline Wire Cutting Scissors & 83 & 1 \\
\hline Wire Extraction Pliers & 81 & 8 \\
\hline Wire Gauge & 74 & 4 \\
\hline Wire Guide-Demel & 82 & 22 \\
\hline Wire Passer & 82 & 23 \\
\hline Wire Passer/Retriever Forceps & s 82 & 23 \\
\hline Wire Pulling Forceps & 82 & 16 \\
\hline Wire Tightener & 82 & 20-21 \\
\hline Wire Twister and Tightener & 82 & 16 \\
\hline Wire Twister/Cutter & 82 & 18-19 \\
\hline Wire Twister/Shear Cutter & 82 & 18 \\
\hline Wire Twisting Forceps & 82 & 16-17 \\
\hline Wire-Cerclage & 78-79 & 3 \\
\hline Wire-Kirschner-stainless & 78-79 & 1 \\
\hline Wire-Kirschner-Ti alloy & 78-79 & 3 \\
\hline Wolff Plaster Cast Breaker & 73 & 1 \\
\hline Woodson Elevator/Spatula & 42-43 & 11 \\
\hline Woodson Separator/Packer & 42-43 & 11 \\
\hline Wound Approximation Forceps & s 17 & 3 \\
\hline Wrench & 86-87 & 15 \\
\hline Wullstein-Weitlaner Retractor & 38-40 & 11 \\
\hline Wylie Renal Vein Retractor X & 34-37 & 22 \\
\hline X-Ray Ruler & 74 & 4 \\
\hline Y & & \\
\hline Yankauer Suction Tube & 75-76 & 3 \\
\hline Youngblood Curette & 51 & 5 \\
\hline Z & & \\
\hline Z Knee Retractor & 34-37 & 33 \\
\hline Zaufal-Jansen Rongeur & 66 & 9 \\
\hline Zenker Ligat Forceps-bariatric & 22 & 10 \\
\hline Zielke Ring Curette & 51 & 14 \\
\hline
\end{tabular}

\section*{110/14 - alphabetical index}

\section*{gSource Verified Quality}

Every gSource instrument must pass detailed Quality Assurance (QA) tests before it can be sold.

Instruments are tested for:
- Critical Dimensions
- Function
- Pattern Consistency
- Workmanship
- Material

We perform the following QA tests to ensure that every instrument we sell will perform its function during critical surgical procedures.

Surface inspection
All instruments are visually inspected for defects in material and surface finish. They must have a flawless satin finish and be free of excess lubricants and foreign substances.

Dimensions verified
Critical dimensions are measured with calipers, micrometers, or other specialty gauges and compared to technical drawings or gSource catalog descriptions. To ensure pattern consistency selected instruments are compared to inspection samples.

Our gS logo is a symbol for Verified Quality. This mark is proof of a lifetime guarantee.
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline 10 & & & gS 12.1600 & 12 & 3 \\
\hline gS 10.1502 & 77 & 10 & gS 12.1601 & 12 & 3 \\
\hline gS 10.1503 & 77 & 10 & gS 12.1602 & 12 & 3 \\
\hline gS 10.1504 & 77 & 10 & gS 12.1603 & 12 & 3 \\
\hline gS 10.1505 & 77 & 10 & gS 12.1604 & 12 & 1 \\
\hline gS 10.1506 & 77 & 10 & gS 12.1605 & 12 & 1 \\
\hline gS 10.1525 & 77 & 10 & gS 12.1606 & 12 & 1 \\
\hline gS 10.1526 & 77 & 10 & gS 12.1610 & 12 & 1 \\
\hline gS 10.1527 & 77 & 10 & gS 12.1615 & 12 & 1 \\
\hline gS 10.1528 & 77 & 10 & gS 12.1617 & 12 & 1 \\
\hline gS 10.1529 & 77 & 10 & gS 12.1620 & 12 & 2 \\
\hline 11 & & & gS 12.1640 & 12 & 1 \\
\hline gS 11.1900 & 11 & 1 & gS 12.1700 & 12 & 2 \\
\hline gS 11.1920 & 11 & 1 & gS 12.1701 & 12 & 2 \\
\hline gS 11.1930 & 11 & 1 & gS 12.1750 & 12 & 3 \\
\hline gS 11.4128 & 11 & 1 & gS 12.1760 & 12 & 1 \\
\hline gS 11.4256 & 11 & 1 & gS 12.1800 & 12 & 3 \\
\hline gS 11.4512 & 11 & 1 & gS 12.2540 & 12 & 4 \\
\hline gS 11.5300 & 11 & 4 & gS 12.2580 & 12 & 2 \\
\hline gS 11.5340 & 11 & 4 & gS 12.2590 & 12 & 3 \\
\hline gS 11.5360 & 11 & 4 & gS 12.2591 & 12 & 4 \\
\hline gS 11.5362 & 11 & 4 & gS 12.2780 & 12 & 2 \\
\hline gS 11.5600 & 11 & 4 & gS 12.2781 & 12 & 2 \\
\hline gS 11.5680 & 11 & 4 & gS 12.4000 & 12 & 5 \\
\hline gS 11.5920 & 11 & 3 & gS 12.4200 & 12 & 4 \\
\hline gS 11.6140 & 11 & 3 & 13 & & \\
\hline gS 11.7110 & 11 & 2 & gS 13.1640 & 13-14 & 1 \\
\hline gS 11.7111 & 11 & 2 & gS 13.1660 & 13-14 & 1 \\
\hline gS 11.7112 & 11 & 2 & gS 13.1670 & 13-14 & 1 \\
\hline gS 11.7113 & 11 & 2 & gS 13.1671 & 13-14 & 1 \\
\hline gS 11.7114 & 11 & 2 & gS 13.1672 & 13-14 & 1 \\
\hline gS 11.7115 & 11 & 2 & gS 13.1680 & 13-14 & 1 \\
\hline gS 11.7116 & 11 & 2 & gS 13.1720 & 13-14 & 1 \\
\hline gS 11.7133 & 11 & 2 & gS 13.1721 & 13-14 & 1 \\
\hline gS 11.7134 & 11 & 2 & gS 13.1842 & 13-14 & 1 \\
\hline gS 11.7135 & 11 & 2 & gS 13.1844 & 13-14 & 1 \\
\hline gS 11.7136 & 11 & 2 & gS 13.2380 & 13-14 & 1 \\
\hline gS 11.7137 & 11 & 2 & gS 13.2381 & 13-14 & 1 \\
\hline gS 11.7141 & 11 & 2 & gS 13.2382 & 13-14 & 1 \\
\hline gS 11.7142 & 11 & 2 & gS 13.2384 & 13-14 & 1 \\
\hline gS 11.7143 & 11 & 2 & gS 13.2385 & 13-14 & 1 \\
\hline gS 11.7144 & 11 & 2 & gS 13.2386 & 13-14 & 1 \\
\hline gS 11.7145 & 11 & 2 & gS 13.2390 & 13-14 & 1 \\
\hline gS 11.7211 & 11 & 2 & gS 13.2392 & 13-14 & 1 \\
\hline gS 11.7213 & 11 & 2 & gS 13.2393 & 13-14 & 1 \\
\hline gS 11.7214 & 11 & 2 & gS 13.2600 & 13-14 & 2 \\
\hline gS 11.7216 & 11 & 2 & gS 13.2640 & 13-14 & 2 \\
\hline gS 11.7218 & 11 & 2 & gS 13.2642 & 13-14 & 2 \\
\hline gS 11.7220 & 11 & 2 & gS 13.2644 & 13-14 & 2 \\
\hline gS 11.7225 & 11 & 2 & gS 13.2680 & 13-14 & 2 \\
\hline gS 11.9500 & 11 & 3 & gS 13.2720 & 13-14 & 2 \\
\hline gS 11.9525 & 11 & 3 & gS 13.2740 & 13-14 & 2 \\
\hline 12 & & & gS 13.2760 & 13-14 & 2 \\
\hline gS 12.1000 & 12 & 4 & gS 13.2770 & 13-14 & 2 \\
\hline gS 12.1580 & 12 & 1 & gS 13.2772 & 13-14 & 2 \\
\hline gS 12.1590 & 12 & 1 & gS 13.2780 & 13-14 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 13.2782 & 13-14 & 8 & gS 13.4026 & 13-14 & 4 \\
\hline gS 13.2800 & 13-14 & 8 & gS 13.4028 & 13-14 & 4 \\
\hline gS 13.2802 & 13-14 & 8 & gS 13.4031 & 13-14 & 4 \\
\hline gS 13.2816 & 13-14 & 2 & gS 13.4032 & 13-14 & 4 \\
\hline gS 13.2830 & 13-14 & 2 & gS 13.4033 & 13-14 & 4 \\
\hline gS 13.3011 & 13-14 & 3 & gS 13.4034 & 13-14 & 4 \\
\hline gS 13.3012 & 13-14 & 3 & gS 13.4035 & 13-14 & 4 \\
\hline gS 13.3114 & 13-14 & 7 & gS 13.4036 & 13-14 & 4 \\
\hline gS 13.3540 & 13-14 & 9 & gS 13.4160 & 13-14 & 2 \\
\hline gS 13.3542 & 13-14 & 9 & gS 13.4170 & 13-14 & 3 \\
\hline gS 13.3560 & 13-14 & 6 & gS 13.4172 & 13-14 & 3 \\
\hline gS 13.3561 & 13-14 & 6 & gS 13.4180 & 13-14 & 7 \\
\hline gS 13.3580 & 13-14 & 6 & gS 13.4182 & 13-14 & 7 \\
\hline gS 13.3581 & 13-14 & 6 & gS 13.4190 & 13-14 & 7 \\
\hline gS 13.3585 & 13-14 & 6 & gS 13.4250 & 13-14 & 6 \\
\hline gS 13.3590 & 13-14 & 6 & gS 13.4270 & 13-14 & 6 \\
\hline gS 13.3600 & 13-14 & 6 & gS 13.4290 & 13-14 & 9 \\
\hline gS 13.3601 & 13-14 & 6 & gS 13.4340 & 13-14 & 9 \\
\hline gS 13.3620 & 13-14 & 6 & gS 13.4360 & 13-14 & 9 \\
\hline gS 13.3621 & 13-14 & 6 & gS 13.5360 & 13-14 & 5 \\
\hline gS 13.3920 & 13-14 & 6 & gS 13.5380 & 13-14 & 5 \\
\hline gS 13.3940 & 13-14 & 6 & gS 13.5430 & 13-14 & 5 \\
\hline gS 13.3950 & 13-14 & 6 & gS 13.5450 & 13-14 & 5 \\
\hline gS 13.3951 & 13-14 & 6 & gS 13.5580 & 13-14 & 5 \\
\hline gS 13.3952 & 13-14 & 6 & gS 13.5581 & 13-14 & 5 \\
\hline gS 13.3954 & 13-14 & 6 & gS 13.5620 & 13-14 & 5 \\
\hline gS 13.3961 & 13-14 & 6 & gS 13.5621 & 13-14 & 5 \\
\hline gS 13.3965 & 13-14 & 10 & gS 13.5660 & 13-14 & 5 \\
\hline gS 13.3966 & 13-14 & 10 & gS 13.5661 & 13-14 & 5 \\
\hline gS 13.3971 & 13-14 & 6 & gS 13.5700 & 13-14 & 5 \\
\hline gS 13.3972 & 13-14 & 6 & gS 13.5701 & 13-14 & 5 \\
\hline gS 13.3975 & 13-14 & 6 & gS 13.5720 & 13-14 & 5 \\
\hline gS 13.3976 & 13-14 & 6 & gS 13.5740 & 13-14 & 5 \\
\hline gS 13.3977 & 13-14 & 6 & gS 13.5760 & 13-14 & 5 \\
\hline gS 13.3978 & 13-14 & 6 & gS 13.5761 & 13-14 & 5 \\
\hline gS 13.3996 & 13-14 & 6 & gS 13.5780 & 13-14 & 5 \\
\hline gS 13.4001 & 13-14 & 4 & gS 13.5781 & 13-14 & 5 \\
\hline gS 13.4002 & 13-14 & 4 & gS 13.5820 & 13-14 & 5 \\
\hline gS 13.4003 & 13-14 & 4 & gS 13.5840 & 13-14 & 5 \\
\hline gS 13.4004 & 13-14 & 4 & gS 13.5860 & 13-14 & 5 \\
\hline gS 13.4005 & 13-14 & 4 & gS 13.5880 & 13-14 & 5 \\
\hline gS 13.4006 & 13-14 & 4 & gS 13.5920 & 13-14 & 5 \\
\hline gS 13.4008 & 13-14 & 4 & gS 13.5930 & 13-14 & 5 \\
\hline gS 13.4009 & 13-14 & 4 & gS 13.5940 & 13-14 & 5 \\
\hline gS 13.4011 & 13-14 & 4 & gS 13.6320 & 13-14 & 2 \\
\hline gS 13.4012 & 13-14 & 4 & gS 13.6340 & 13-14 & 2 \\
\hline gS 13.4013 & 13-14 & 4 & gS 13.6360 & 13-14 & 2 \\
\hline gS 13.4014 & 13-14 & 4 & gS 13.6380 & 13-14 & 2 \\
\hline gS 13.4015 & 13-14 & 4 & gS 13.6400 & 13-14 & 2 \\
\hline gS 13.4016 & 13-14 & 4 & gS 13.6420 & 13-14 & 2 \\
\hline gS 13.4018 & 13-14 & 4 & gS 13.6440 & 13-14 & 2 \\
\hline gS 13.4021 & 13-14 & 4 & gS 13.6600 & 13-14 & 3 \\
\hline gS 13.4022 & 13-14 & 4 & gS 13.7060 & 13-14 & 8 \\
\hline gS 13.4023 & 13-14 & 4 & gS 13.7070 & 13-14 & 8 \\
\hline gS 13.4024 & 13-14 & 4 & gS 13.7120 & 13-14 & 8 \\
\hline gS 13.4025 & 13-14 & 4 & gS 13.7140 & 13-14 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline gS 13.7145 & 13-14 & 8 \\
\hline gS 13.7200 & 13-14 & 3 \\
\hline gS 13.7250 & 13-14 & 7 \\
\hline gS 13.7433 & 13-14 & 5 \\
\hline gS 13.7436 & 13-14 & 5 \\
\hline gS 13.7438 & 13-14 & 5 \\
\hline gS 13.7439 & 13-14 & 5 \\
\hline gS 13.7440 & 13-14 & 5 \\
\hline gS 13.7460 & 13-14 & 5 \\
\hline gS 13.7466 & 13-14 & 5 \\
\hline gS 13.7480 & 13-14 & 5 \\
\hline gS 13.7485 & 13-14 & 5 \\
\hline gS 13.7505 & 13-14 & 5 \\
\hline gS 13.7520 & 13-14 & 5 \\
\hline gS 13.7525 & 13-14 & 5 \\
\hline gS 13.7535 & 13-14 & 5 \\
\hline gS 13.7545 & 13-14 & 5 \\
\hline \multicolumn{3}{|l|}{14} \\
\hline gS 14.0000 & 13-14 & 8 \\
\hline gS 14.0001 & 13-14 & 8 \\
\hline gS 14.0002 & 13-14 & 8 \\
\hline gS 14.2010 & 13-14 & 9 \\
\hline gS 14.3000 & 13-14 & 10 \\
\hline \[
\begin{aligned}
& \text { gS } 14.7125 \\
& 15
\end{aligned}
\] & 13-14 & 8 \\
\hline gS 15.1600 & 15 & 5 \\
\hline gS 15.1680 & 15 & 1 \\
\hline gS 15.1800 & 15 & 1 \\
\hline gS 15.1920 & 15 & 1 \\
\hline gS 15.1950 & 15 & 1 \\
\hline gS 15.2040 & 15 & 1 \\
\hline gS 15.2200 & 15 & 2 \\
\hline gS 15.2300 & 15 & 3 \\
\hline gS 15.6600 & 15 & 2 \\
\hline gS 15.7680 & 15 & 4 \\
\hline gS 15.7800 & 15 & 4 \\
\hline gS 15.7920 & 15 & 4 \\
\hline gS 15.7921 & 15 & 4 \\
\hline gS 15.8011 & 15 & 4 \\
\hline gS 15.8040 & 15 & 4 \\
\hline gS 15.8041 & 15 & 4 \\
\hline gS 15.8043 & 15 & 4 \\
\hline gS 15.8070 & 15 & 4 \\
\hline gS 15.8080 & 15 & 4 \\
\hline gS 15.8082 & 15 & 4 \\
\hline gS 15.8920 & 15 & 4 \\
\hline gS 15.9040 & 15 & 4 \\
\hline gS 15.9160 & 15 & 5 \\
\hline gS 15.9200 & 15 & 7 \\
\hline gS 15.9202 & 15 & 7 \\
\hline gS 15.9250 & 15 & 5 \\
\hline gS 15.9299 & 15 & 6 \\
\hline gS 15.9300 & 15 & 6 \\
\hline gS 15.9301 & 15 & 6 \\
\hline gS 15.9302 & 15 & 6 \\
\hline gS 15.9303 & 15 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 16.7550 & 16 & 2 & gS 17.1935 & 17 & 4 \\
\hline gS 16.7560 & 16 & 2 & gS 17.1973 & 17 & 3 \\
\hline gS 16.7570 & 16 & 3 & gS 17.1974 & 17 & 3 \\
\hline gS 16.7575 & 16 & 3 & gS 17.1975 & 17 & 3 \\
\hline gS 16.7580 & 16 & 5 & gS 17.2010 & 17 & 2 \\
\hline gS 16.7585 & 16 & 5 & gS 17.2012 & 17 & 2 \\
\hline gS 16.7590 & 16 & 5 & gS 17.2050 & 17 & 9 \\
\hline gS 16.7600 & 16 & 6 & gS 17.2070 & 17 & 9 \\
\hline gS 16.7610 & 16 & 6 & gS 17.2100 & 17 & 9 \\
\hline gS 16.7620 & 16 & 6 & gS 17.2120 & 17 & 9 \\
\hline gS 16.7630 & 16 & 6 & gS 17.2160 & 17 & 9 \\
\hline 17 & & & gS 17.2240 & 17 & 9 \\
\hline gS 17.0430 & 17 & 3 & gS 17.2250 & 17 & 9 \\
\hline gS 17.0440 & 17 & 3 & gS 17.2255 & 17 & 9 \\
\hline gS 17.0450 & 17 & 3 & gS 17.2257 & 17 & 9 \\
\hline gS 17.0458 & 17 & 7 & gS 17.2280 & 17 & 9 \\
\hline gS 17.0459 & 17 & 7 & gS 17.2306 & 17 & 9 \\
\hline gS 17.0470 & 17 & 8 & gS 17.2308 & 17 & 9 \\
\hline gS 17.0616 & 17 & 6 & gS 17.2312 & 17 & 9 \\
\hline gS 17.0620 & 17 & 6 & gS 17.2314 & 17 & 9 \\
\hline gS 17.0624 & 17 & 6 & gS 17.2860 & 17 & 6 \\
\hline gS 17.0626 & 17 & 6 & gS 17.2920 & 17 & 7 \\
\hline gS 17.0816 & 17 & 6 & gS 17.2960 & 17 & 7 \\
\hline gS 17.0820 & 17 & 6 & gS 17.2980 & 17 & 7 \\
\hline gS 17.0824 & 17 & 6 & gS 17.3513 & 17 & 1 \\
\hline gS 17.0830 & 17 & 6 & gS 17.3514 & 17 & 1 \\
\hline gS 17.0832 & 17 & 6 & gS 17.3516 & 17 & 1 \\
\hline gS 17.0833 & 17 & 6 & gS 17.3518 & 17 & 1 \\
\hline gS 17.0834 & 17 & 6 & gS 17.3520 & 17 & 1 \\
\hline gS 17.0835 & 17 & 6 & gS 17.3640 & 17 & 1 \\
\hline gS 17.0916 & 17 & 7 & gS 17.3680 & 17 & 1 \\
\hline gS 17.0920 & 17 & 7 & gS 17.3720 & 17 & 1 \\
\hline gS 17.0924 & 17 & 7 & gS 17.3760 & 17 & 1 \\
\hline gS 17.0930 & 17 & 7 & gS 17.3780 & 17 & 1 \\
\hline gS 17.1016 & 17 & 6 & gS 17.3800 & 17 & 1 \\
\hline gS 17.1020 & 17 & 6 & gS 17.3860 & 17 & 1 \\
\hline gS 17.1024 & 17 & 6 & gS 17.3900 & 17 & 1 \\
\hline gS 17.1030 & 17 & 6 & gS 17.3920 & 17 & 1 \\
\hline gS 17.1500 & 17 & 4 & gS 17.3960 & 17 & 1 \\
\hline gS 17.1570 & 17 & 4 & gS 17.3970 & 17 & 1 \\
\hline gS 17.1630 & 17 & 4 & gS 17.3980 & 17 & 1 \\
\hline gS 17.1632 & 17 & 4 & gS 17.4040 & 17 & 1 \\
\hline gS 17.1634 & 17 & 4 & gS 17.4042 & 17 & 1 \\
\hline gS 17.1640 & 17 & 4 & gS 17.4070 & 17 & 2 \\
\hline gS 17.1660 & 17 & 4 & gS 17.4072 & 17 & 2 \\
\hline gS 17.1665 & 17 & 4 & gS 17.4074 & 17 & 2 \\
\hline gS 17.1666 & 17 & 5 & gS 17.4076 & 17 & 2 \\
\hline gS 17.1670 & 17 & 4 & gS 17.4100 & 17 & 1 \\
\hline gS 17.1690 & 17 & 2 & gS 17.4140 & 17 & 1 \\
\hline gS 17.1692 & 17 & 2 & gS 17.4180 & 17 & 1 \\
\hline gS 17.1693 & 17 & 2 & gS 17.4220 & 17 & 1 \\
\hline gS 17.1800 & 17 & 1 & gS 17.4222 & 17 & 1 \\
\hline gS 17.1880 & 17 & 1 & gS 17.4226 & 17 & 1 \\
\hline gS 17.1920 & 17 & 4 & gS 17.4228 & 17 & 1 \\
\hline gS 17.1925 & 17 & 4 & gS 17.4238 & 17 & 5 \\
\hline gS 17.1929 & 17 & 4 & gS 17.4240 & 17 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & p \\
\hline gS 17.4241 & 17 & 10 & gS 19.1620 & 19 & 2 \\
\hline gS 17.4250 & 17 & 10 & gS 19.1621 & 19 & 2 \\
\hline gS 17.4255 & 17 & 10 & gS 19.1625 & 19 & 2 \\
\hline gS 17.4260 & 17 & 10 & gS 19.1635 & 19 & 2 \\
\hline gS 17.4264 & 17 & 10 & gS 19.1720 & 19 & 2 \\
\hline gS 17.4302 & 17 & 5 & gS 19.1722 & 19 & 2 \\
\hline gS 17.4307 & 17 & 5 & gS 19.1750 & 19 & 3 \\
\hline gS 17.4312 & 17 & 5 & gS 19.1756 & 19 & 3 \\
\hline gS 17.4400 & 17 & 3 & gS 19.1760 & 19 & 1 \\
\hline gS 17.5060 & 17 & 10 & gS 19.1761 & 19 & 1 \\
\hline gS 17.5080 & 17 & 10 & gS 19.1770 & 19 & 3 \\
\hline gS 17.5150 & 17 & 10 & gS 19.1799 & 19 & 1 \\
\hline gS 17.5151 & 17 & 10 & gS 19.1800 & 19 & 1 \\
\hline gS 17.5152 & 17 & 10 & gS 19.1840 & 19 & 1 \\
\hline gS 17.5154 & 17 & 10 & gS 19.1880 & 19 & 1 \\
\hline gS 17.5160 & 17 & 10 & gS 19.1882 & 19 & 1 \\
\hline gS 17.5180 & 17 & 10 & gS 19.1884 & 19 & 1 \\
\hline gS 17.5260 & 17 & 10 & gS 19.1886 & 19 & 1 \\
\hline gS 17.5280 & 17 & 10 & gS 19.1888 & 19 & 1 \\
\hline gS 17.5360 & 17 & 10 & gS 19.1920 & 19 & 1 \\
\hline gS 17.5380 & 17 & 10 & gS 19.1935 & 19 & 1 \\
\hline gS 17.5460 & 17 & 10 & gS 19.1937 & 19 & 1 \\
\hline gS 17.5480 & 17 & 10 & gS 19.1940 & 19 & 1 \\
\hline gS 17.5500 & 17 & 10 & gS 19.2000 & 19 & 1 \\
\hline gS 17.5520 & 17 & 10 & gS 19.2060 & 19 & 1 \\
\hline gS 17.5560 & 17 & 10 & gS 19.2280 & 19 & 1 \\
\hline gS 17.5580 & 17 & 10 & gS 19.2282 & 19 & 1 \\
\hline gS 17.5586 & 17 & 10 & gS 19.2284 & 19 & 1 \\
\hline gS 17.5587 & 17 & 10 & gS 19.2286 & 19 & 1 \\
\hline gS 17.6020 & 17 & 5 & gS 19.2288 & 19 & 1 \\
\hline gS 17.6110 & 17 & 6 & gS 19.2290 & 19 & 1 \\
\hline gS 17.6260 & 17 & 8 & gS 19.2292 & 19 & 1 \\
\hline gS 17.6262 & 17 & 8 & gS 19.2800 & 19 & 2 \\
\hline gS 17.6264 & 17 & 8 & gS 19.2806 & 19 & 2 \\
\hline gS 17.8000 & 17 & 7 & gS 19.2810 & 19 & 2 \\
\hline gS 17.8900 & 17 & 3 & gS 19.2840 & 19 & 3 \\
\hline 18 & & & gS 19.2855 & 19 & 3 \\
\hline gS 18.4640 & 18 & 1 & gS 19.2860 & 19 & 3 \\
\hline gS 18.4660 & 18 & 1 & gS 19.2982 & 19 & 4 \\
\hline gS 18.4860 & 18 & 1 & 20 & & \\
\hline gS 18.4900 & 18 & 1 & gS 20.3901 & 20 & 1 \\
\hline gS 18.5100 & 18 & 1 & gS 20.3902 & 20 & 1 \\
\hline gS 18.5120 & 18 & 1 & gS 20.3903 & 20 & 1 \\
\hline gS 18.5500 & 18 & 2 & gS 20.4660 & 20 & 2 \\
\hline gS 18.5502 & 18 & 2 & gS 20.4680 & 20 & 2 \\
\hline gS 18.5504 & 18 & 2 & gS 20.4700 & 20 & 2 \\
\hline gS 18.5506 & 18 & 2 & gS 20.4720 & 20 & 2 \\
\hline gS 18.5508 & 18 & 2 & gS 20.4860 & 20 & 2 \\
\hline gS 18.5510 & 18 & 2 & gS 20.4880 & 20 & 2 \\
\hline gS 18.5780 & 18 & 1 & gS 20.4900 & 20 & 2 \\
\hline gS 18.5785 & 18 & 1 & gS 20.4920 & 20 & 2 \\
\hline gS 18.6090 & 18 & 2 & gS 20.4922 & 20 & 2 \\
\hline gS 18.6110 & 18 & 2 & gS 20.4923 & 20 & 2 \\
\hline gS 18.6210 & 18 & 2 & gS 20.4925 & 20 & 1 \\
\hline 19 & & & gS 20.4927 & 20 & 1 \\
\hline gS 19.1600 & 19 & 2 & gS 20.5440 & 20 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline gS 20.5554 & 20 & 4 \\
\hline gS 20.5555 & 20 & 4 \\
\hline gS 20.5560 & 20 & 4 \\
\hline gS 20.5564 & 20 & 4 \\
\hline gS 20.5565 & 20 & 4 \\
\hline gS 20.5571 & 20 & 4 \\
\hline gS 20.5580 & 20 & 3 \\
\hline gS 20.5620 & 20 & 3 \\
\hline gS 20.5640 & 20 & 3 \\
\hline gS 20.5660 & 20 & 3 \\
\hline gS 20.5680 & 20 & 3 \\
\hline gS 20.5700 & 20 & 3 \\
\hline gS 20.5780 & 20 & 3 \\
\hline gS 20.8000 & 20 & 2 \\
\hline 21 & & \\
\hline gS 21.1640 & 21 & 1 \\
\hline gS 21.1650 & 21 & 1 \\
\hline gS 21.1660 & 21 & 1 \\
\hline gS 21.1670 & 21 & 1 \\
\hline gS 21.1680 & 21 & 1 \\
\hline gS 21.1700 & 21 & 1 \\
\hline gS 21.1710 & 21 & 1 \\
\hline gS 21.1712 & 21 & 1 \\
\hline gS 21.1714 & 21 & 1 \\
\hline gS 21.1850 & 21 & 3 \\
\hline gS 21.1920 & 21 & 1 \\
\hline gS 21.1940 & 21 & 1 \\
\hline gS 21.2040 & 21 & 3 \\
\hline gS 21.2060 & 21 & 5 \\
\hline gS 21.2080 & 21 & 5 \\
\hline gS 21.2300 & 21 & 4 \\
\hline gS 21.2320 & 21 & 4 \\
\hline gS 21.2330 & 21 & 4 \\
\hline gS 21.2332 & 21 & 4 \\
\hline gS 21.2335 & 21 & 4 \\
\hline gS 21.2340 & 21 & 4 \\
\hline gS 21.2450 & 21 & 4 \\
\hline gS 21.2520 & 21 & 4 \\
\hline gS 21.2540 & 21 & 4 \\
\hline gS 21.2620 & 21 & 1 \\
\hline gS 21.2640 & 21 & 1 \\
\hline gS 21.2660 & 21 & 1 \\
\hline gS 21.2700 & 21 & 2 \\
\hline gS 21.2710 & 21 & 2 \\
\hline gS 21.2721 & 21 & 2 \\
\hline gS 21.2730 & 21 & 2 \\
\hline gS 21.2740 & 21 & 2 \\
\hline gS 21.2741 & 21 & 2 \\
\hline gS 21.2750 & 21 & 2 \\
\hline gS 21.2760 & 21 & 2 \\
\hline gS 21.2780 & 21 & 2 \\
\hline gS 21.2782 & 21 & 2 \\
\hline gS 21.2784 & 21 & 2 \\
\hline gS 21.2980 & 21 & 5 \\
\hline gS 21.2990 & 21 & 5 \\
\hline gS 21.3000 & 21 & 5 \\
\hline
\end{tabular}

\begin{tabular}{lll} 
part number & section & page \\
\hline gS 22.1752 & 22 & 1 \\
gS 22.1754 & 22 & 1 \\
gS 22.1758 & 22 & 1 \\
gS 22.1759 & 22 & 1 \\
gS 22.1760 & 22 & 1 \\
gS 22.1780 & 22 & 1 \\
gS 22.1812 & 22 & 2 \\
gS 22.1813 & 22 & 2 \\
gS 22.1820 & 22 & 5 \\
gS 22.2060 & 22 & 2 \\
gS 22.2080 & 22 & 2 \\
gS 22.2560 & 22 & 2 \\
gS 22.2580 & 22 & 2 \\
gS 22.2590 & 22 & 2 \\
gS 22.2600 & 22 & 2 \\
gS 22.2620 & 22 & 2 \\
gS 22.2655 & 22 & 2 \\
gS 22.2656 & 22 & 2 \\
gS 22.2657 & 22 & 2 \\
gS 22.2658 & 22 & 2 \\
gS 22.2660 & 22 & 3 \\
gS 22.2680 & 22 & 3 \\
gS 22.2690 & 22 & 3 \\
gS 22.2691 & 22 & 3 \\
gS 22.2692 & 22 & 3 \\
gS 22.2693 & 22 & 3 \\
gS 22.2694 & 22 & 3 \\
gS 22.2695 & 22 & 3 \\
gS 22.2710 & 22 & 6 \\
gS 22.2712 & 22 & 6 \\
gS 22.2713 & 22 & 6 \\
gS 22.2714 & 22 & 6 \\
gS 22.2715 & 22 & 6 \\
gS 22.2725 & 22 & 6 \\
gS 22.2740 & 22 & 8 \\
gS 22.2760 & 22 & 3 \\
gS 22.2780 & 22 & 3 \\
gS 22.2800 & 22 & 3 \\
gS 22.2820 & 22 & 3 \\
gS 22.2860 & 22 & 4 \\
gS 22.2880 & 22 & 4 \\
gS 22.2960 & 22 & 4 \\
gS 22.2980 & 22 & 4 \\
gS 22.4020 & 22 & 4 \\
gS 22.4040 & 22 & 4 \\
gS 22.4060 & 22 & 4 \\
gS 22.4061 & 22 & 4 \\
gS 22.4080 & 22 & 4 \\
gS 22.4160 & 22 & 4 \\
gS 22.4180 & 22 & 4 \\
gS 22.4260 & 22 & 4 \\
gS 22.4280 & 22 & 4 \\
gS 22.4360 & 22 & 4 \\
gS 22.4380 & 22 & 4 \\
gS 22.4460 & 22 & 4 \\
gS 22.4480 & 22 & 4 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
part number & section & page \\
\hline gS 22.4500 & 22 & 4 \\
gS 22.4520 & 22 & 4 \\
gS 22.4560 & 22 & 4 \\
gS 22.4580 & 22 & 4 \\
gS 22.4600 & 22 & 4 \\
gS 22.4620 & 22 & 4 \\
gS 22.4920 & 22 & 4 \\
gS 22.6160 & 22 & 8 \\
gS 22.6180 & 22 & 8 \\
gS 22.6360 & 22 & 8 \\
gS 22.6380 & 22 & 8 \\
gS 22.6550 & 22 & 6 \\
gS 22.6560 & 22 & 6 \\
gS 22.6570 & 22 & 6 \\
gS 22.6620 & 22 & 6 \\
gS 22.6640 & 22 & 6 \\
gS 22.6650 & 22 & 8 \\
gS 22.6670 & 22 & 7 \\
gS 22.6671 & 22 & 7 \\
gS 22.6680 & 22 & 7 \\
gS 22.6682 & 22 & 7 \\
gS 22.6730 & 22 & 6 \\
gS 22.6760 & 22 & 6 \\
gS 22.6790 & 22 & 6 \\
gS 22.7602 & 22 & 9 \\
gS 22.7604 & 22 & 9 \\
gS 22.7606 & 22 & 9 \\
gS 22.7702 & 22 & 7 \\
gS 22.7704 & 22 & 7 \\
gS 22.7706 & 22 & 7 \\
gS 22.7708 & 22 & 7 \\
gS 22.7960 & 22 & 9 \\
gS 22.8422 & 22 & 3 \\
gS 22.8424 & 22 & 3 \\
gS 22.8440 & 22 & 5 \\
gS 22.8460 & 22 & 5 \\
gS 22.8470 & 22 & 5 \\
gS 22.8472 & 22 & 5 \\
gS 22.8482 & 22 & 5 \\
gS 22.8660 & 22 & 9 \\
gS 22.8662 & 22 & 9 \\
gS 22.8715 & 22 & 10 \\
gS 22.9160 & 22 & 8 \\
gS 22.9180 & 22 & 8 \\
gS 22.9260 & 22 & 8 \\
gS 22.9280 & 22 & 8 \\
gS 22.9310 & 22 & 10 \\
23 & & \\
gS 23.6000 & 23 & 1 \\
24 & & \\
gS 24.1320 & 24 & 1 \\
gS 24.2860 & 24 & 1 \\
gS 24.2880 & 24 & 1 \\
gS 24.2882 & 24 & 1 \\
gS 24.2884 & 24 & 1 \\
gS 24.2886 & 24 & 1 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 24.2887 & 24 & 1 & gS 25.2580 & 25 & 6 \\
\hline gS 24.2892 & 24 & 1 & gS 25.2581 & 25 & 6 \\
\hline gS 24.2893 & 24 & 1 & gS 25.2595 & 25 & 4 \\
\hline 25 & & & gS 25.2596 & 25 & 4 \\
\hline gS 25.1101 & 25 & 3 & gS 25.2609 & 25 & 5 \\
\hline gS 25.1102 & 25 & 3 & gS 25.2610 & 25 & 5 \\
\hline gS 25.1103 & 25 & 3 & gS 25.2620 & 25 & 5 \\
\hline gS 25.1104 & 25 & 3 & gS 25.2640 & 25 & 5 \\
\hline gS 25.1212 & 25 & 2 & gS 25.2660 & 25 & 5 \\
\hline gS 25.1351 & 25 & 3 & gS 25.2720 & 25 & 5 \\
\hline gS 25.1352 & 25 & 3 & gS 25.2801 & 25 & 6 \\
\hline gS 25.1362 & 25 & 4 & gS 25.2802 & 25 & 6 \\
\hline gS 25.1400 & 25 & 4 & gS 25.2803 & 25 & 6 \\
\hline gS 25.1402 & 25 & 4 & gS 25.2804 & 25 & 6 \\
\hline gS 25.1450 & 25 & 3 & gS 25.2811 & 25 & 6 \\
\hline gS 25.1455 & 25 & 3 & gS 25.2812 & 25 & 6 \\
\hline gS 25.1600 & 25 & 2 & gS 25.2813 & 25 & 6 \\
\hline gS 25.1640 & 25 & 2 & gS 25.2814 & 25 & 6 \\
\hline gS 25.1680 & 25 & 2 & gS 25.4490 & 25 & 4 \\
\hline gS 25.1770 & 25 & 3 & gS 25.4500 & 25 & 4 \\
\hline gS 25.1830 & 25 & 3 & 26 & & \\
\hline gS 25.1840 & 25 & 8 & gS 26.0150 & 26 & 1 \\
\hline gS 25.1845 & 25 & 8 & gS 26.0175 & 26 & 1 \\
\hline gS 25.1850 & 25 & 8 & gS 26.0177 & 26 & 1 \\
\hline gS 25.1851 & 25 & 8 & gS 26.0220 & 26 & 1 \\
\hline gS 25.1852 & 25 & 8 & gS 26.0303 & 26 & 3 \\
\hline gS 25.1862 & 25 & 7 & gS 26.0304 & 26 & 3 \\
\hline gS 25.1865 & 25 & 7 & gS 26.0305 & 26 & 3 \\
\hline gS 25.1869 & 25 & 7 & gS 26.0306 & 26 & 3 \\
\hline gS 25.1870 & 25 & 7 & gS 26.0307 & 26 & 3 \\
\hline gS 25.1871 & 25 & 7 & gS 26.0308 & 26 & 3 \\
\hline gS 25.1873 & 25 & 7 & gS 26.0332 & 26 & 3 \\
\hline gS 25.1874 & 25 & 7 & gS 26.0333 & 26 & 3 \\
\hline gS 25.1880 & 25 & 5 & gS 26.0337 & 26 & 3 \\
\hline gS 25.1910 & 25 & 5 & gS 26.0423 & 26 & 4 \\
\hline gS 25.1920 & 25 & 5 & gS 26.0480 & 26 & 2 \\
\hline gS 25.1930 & 25 & 5 & gS 26.0482 & 26 & 2 \\
\hline gS 25.1940 & 25 & 5 & gS 26.0590 & 26 & 2 \\
\hline gS 25.1980 & 25 & 1 & gS 26.0610 & 26 & 2 \\
\hline gS 25.1990 & 25 & 2 & gS 26.0630 & 26 & 2 \\
\hline gS 25.1992 & 25 & 2 & gS 26.0650 & 26 & 2 \\
\hline gS 25.2000 & 25 & 9 & gS 26.0670 & 26 & 2 \\
\hline gS 25.2020 & 25 & 9 & gS 26.0680 & 26 & 2 \\
\hline gS 25.2025 & 25 & 9 & gS 26.0690 & 26 & 2 \\
\hline gS 25.2030 & 25 & 9 & gS 26.0701 & 26 & 2 \\
\hline gS 25.2045 & 25 & 9 & gS 26.0702 & 26 & 2 \\
\hline gS 25.2050 & 25 & 9 & gS 26.0703 & 26 & 2 \\
\hline gS 25.2102 & 25 & 2 & gS 26.0704 & 26 & 2 \\
\hline gS 25.2200 & 25 & 6 & gS 26.0705 & 26 & 2 \\
\hline gS 25.2312 & 25 & 1 & gS 26.0706 & 26 & 2 \\
\hline gS 25.2313 & 25 & 1 & gS 26.0707 & 26 & 2 \\
\hline gS 25.2561 & 25 & 1 & gS 26.0740 & 26 & 2 \\
\hline gS 25.2562 & 25 & 1 & gS 26.0760 & 26 & 2 \\
\hline gS 25.2570 & 25 & 7 & gS 26.0780 & 26 & 2 \\
\hline gS 25.2571 & 25 & 7 & gS 26.0800 & 26 & 2 \\
\hline gS 25.2575 & 25 & 1 & gS 26.0820 & 26 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 26.0840 & 26 & 2 & gS 27.7620 & 27 & 2 \\
\hline gS 26.0860 & 26 & 2 & gS 27.7625 & 27 & 2 \\
\hline gS 26.0910 & 26 & 2 & gS 27.7630 & 27 & 2 \\
\hline gS 26.0920 & 26 & 2 & gS 27.7635 & 27 & 2 \\
\hline gS 26.0930 & 26 & 2 & gS 27.7640 & 27 & 2 \\
\hline gS 26.0940 & 26 & 2 & gS 27.7645 & 27 & 2 \\
\hline gS 26.0950 & 26 & 2 & gS 27.7706 & 27 & 2 \\
\hline gS 26.0960 & 26 & 2 & gS 27.7707 & 27 & 2 \\
\hline gS 26.0970 & 26 & 2 & gS 27.7708 & 27 & 2 \\
\hline gS 26.1000 & 26 & 4 & gS 27.7710 & 27 & 2 \\
\hline gS 26.1960 & 26 & 2 & gS 27.7711 & 27 & 2 \\
\hline gS 26.1980 & 26 & 2 & gS 27.7712 & 27 & 2 \\
\hline gS 26.2000 & 26 & 2 & gS 27.9700 & 27 & 1 \\
\hline gS 26.2100 & 26 & 5 & gS 27.9702 & 27 & 1 \\
\hline gS 26.2120 & 26 & 5 & gS 27.9704 & 27 & 1 \\
\hline gS 26.2140 & 26 & 5 & gS 27.9706 & 27 & 1 \\
\hline gS 26.2160 & 26 & 5 & gS 27.9708 & 27 & 1 \\
\hline gS 26.2910 & 26 & 6 & gS 27.9710 & 27 & 1 \\
\hline gS 26.2930 & 26 & 6 & gS 27.9712 & 27 & 1 \\
\hline gS 26.2932 & 26 & 6 & gS 27.9714 & 27 & 1 \\
\hline gS 26.7652 & 26 & 1 & gS 27.9716 & 27 & 1 \\
\hline gS 26.7653 & 26 & 1 & gS 27.9718 & 27 & , \\
\hline gS 26.7655 & 26 & 1 & 29 & & \\
\hline gS 26.7656 & 26 & 1 & gS 29.0020 & 29 & 1 \\
\hline gS 26.8095 & 26 & 6 & gS 29.0022 & 29 & 1 \\
\hline gS 26.8097 & 26 & 6 & gS 29.0050 & 29 & 1 \\
\hline gS 26.9010 & 26 & 5 & gS 29.0675 & 29 & 2 \\
\hline gS 26.9011 & 26 & 5 & gS 29.4310 & 29 & 2 \\
\hline 27 & & & gS 29.4650 & 29 & 1 \\
\hline gS 27.1501 & 27 & 3 & 30 & & \\
\hline gS 27.1503 & 27 & 3 & gS 30.0145 & 30 & 1 \\
\hline gS 27.1505 & 27 & 3 & gS 30.0200 & 30 & 1 \\
\hline gS 27.1507 & 27 & 3 & gS 30.0300 & 30 & 1 \\
\hline gS 27.1509 & 27 & 3 & gS 30.0310 & 30 & 1 \\
\hline gS 27.5260 & 27 & 3 & gS 30.0400 & 30 & 1 \\
\hline gS 27.5262 & 27 & 3 & gS 30.0503 & 30 & 1 \\
\hline gS 27.5264 & 27 & 3 & gS 30.0513 & 30 & 1 \\
\hline gS 27.5266 & 27 & 3 & gS 30.0523 & 30 & 1 \\
\hline gS 27.5280 & 27 & 3 & gS 30.0600 & 30 & 1 \\
\hline gS 27.5282 & 27 & 3 & gS 30.0703 & 30 & 1 \\
\hline gS 27.5284 & 27 & 3 & gS 30.0803 & 30 & 1 \\
\hline gS 27.5290 & 27 & 3 & gS 30.0805 & 30 & 1 \\
\hline gS 27.5292 & 27 & 3 & gS 30.0807 & 30 & 2 \\
\hline gS 27.5294 & 27 & 3 & gS 30.0900 & 30 & 2 \\
\hline gS 27.6600 & 27 & 4 & gS 30.0910 & 30 & 2 \\
\hline gS 27.6640 & 27 & 4 & gS 30.1000 & 30 & 2 \\
\hline gS 27.6680 & 27 & 4 & gS 30.1013 & 30 & 2 \\
\hline gS 27.6690 & 27 & 4 & gS 30.1015 & 30 & 2 \\
\hline gS 27.7000 & 27 & 2 & gS 30.2033 & 30 & 2 \\
\hline gS 27.7325 & 27 & 1 & gS 30.2105 & 30 & 2 \\
\hline gS 27.7331 & 27 & 1 & gS 30.2303 & 30 & 2 \\
\hline gS 27.7546 & 27 & 1 & gS 30.2307 & 30 & 2 \\
\hline gS 27.7605 & 27 & 2 & gS 30.3102 & 30 & 3 \\
\hline gS 27.7610 & 27 & 2 & gS 30.3202 & 30 & 3 \\
\hline gS 27.7615 & 27 & 2 & gS 30.3212 & 30 & 4 \\
\hline gS 27.7618 & 27 & 2 & gS 30.3334 & 30 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 30.3335 & 30 & 5 & gS 33.4221 & 33 & 4 \\
\hline gS 30.3336 & 30 & 7 & gS 33.4222 & 33 & 4 \\
\hline gS 30.4000 & 30 & 5 & gS 33.4230 & 33 & 4 \\
\hline gS 30.4034 & 30 & 6 & gS 33.4231 & 33 & 4 \\
\hline gS 30.4234 & 30 & 6 & gS 33.4232 & 33 & 4 \\
\hline gS 30.5134 & 30 & 7 & gS 33.4240 & 33 & 4 \\
\hline 33 & & & gS 33.4241 & 33 & 4 \\
\hline gS 33.0201 & 33 & 1 & gS 33.4242 & 33 & 4 \\
\hline gS 33.0202 & 33 & 1 & gS 33.4250 & 33 & 4 \\
\hline gS 33.0203 & 33 & 1 & gS 33.4251 & 33 & 4 \\
\hline gS 33.0210 & 33 & 1 & gS 33.4252 & 33 & 4 \\
\hline gS 33.0211 & 33 & 1 & gS 33.4253 & 33 & 4 \\
\hline gS 33.0216 & 33 & 1 & gS 33.4254 & 33 & 4 \\
\hline gS 33.0217 & 33 & 1 & gS 33.4255 & 33 & 4 \\
\hline gS 33.0218 & 33 & 1 & gS 33.4256 & 33 & 4 \\
\hline gS 33.0220 & 33 & 1 & gS 33.4257 & 33 & 4 \\
\hline gS 33.0221 & 33 & 1 & gS 33.4258 & 33 & 4 \\
\hline gS 33.0222 & 33 & 1 & gS 33.4520 & 33 & 3 \\
\hline gS 33.0225 & 33 & 1 & gS 33.4545 & 33 & 3 \\
\hline gS 33.0227 & 33 & 1 & gS 33.5001 & 33 & 3 \\
\hline gS 33.0228 & 33 & 1 & gS 33.5002 & 33 & 3 \\
\hline gS 33.0230 & 33 & 1 & gS 33.5003 & 33 & 3 \\
\hline gS 33.0233 & 33 & 1 & gS 33.5004 & 33 & 3 \\
\hline gS 33.0235 & 33 & 1 & gS 33.5005 & 33 & 3 \\
\hline gS 33.0237 & 33 & 1 & gS 33.5011 & 33 & 3 \\
\hline gS 33.0238 & 33 & 1 & gS 33.5012 & 33 & 3 \\
\hline gS 33.4101 & 33 & 2 & gS 33.5013 & 33 & 3 \\
\hline gS 33.4102 & 33 & 2 & gS 33.5014 & 33 & 3 \\
\hline gS 33.4103 & 33 & 2 & gS 33.5015 & 33 & 3 \\
\hline gS 33.4104 & 33 & 2 & gS 33.5023 & 33 & 3 \\
\hline gS 33.4105 & 33 & 2 & gS 33.5025 & 33 & 3 \\
\hline gS 33.4111 & 33 & 2 & 34 & & \\
\hline gS 33.4112 & 33 & 2 & gS 34.1760 & 34-37 & 4 \\
\hline gS 33.4113 & 33 & 2 & gS 34.1845 & 34-37 & 7 \\
\hline gS 33.4114 & 33 & 2 & gS 34.1855 & 34-37 & 7 \\
\hline gS 33.4115 & 33 & 2 & gS 34.1865 & 34-37 & 7 \\
\hline gS 33.4121 & 33 & 2 & gS 34.1920 & 34-37 & 7 \\
\hline gS 33.4122 & 33 & 2 & gS 34.1930 & 34-37 & 7 \\
\hline gS 33.4123 & 33 & 2 & gS 34.1934 & 34-37 & 3 \\
\hline gS 33.4124 & 33 & 2 & gS 34.1935 & 34-37 & 3 \\
\hline gS 33.4125 & 33 & 2 & gS 34.1940 & 34-37 & 5 \\
\hline gS 33.4131 & 33 & 2 & gS 34.1942 & 34-37 & 5 \\
\hline gS 33.4132 & 33 & 2 & gS 34.1950 & 34-37 & 4 \\
\hline gS 33.4133 & 33 & 2 & gS 34.1960 & 34-37 & 3 \\
\hline gS 33.4134 & 33 & 2 & gS 34.2160 & 34-37 & 8 \\
\hline gS 33.4135 & 33 & 2 & gS 34.2180 & 34-37 & 8 \\
\hline gS 33.4136 & 33 & 2 & gS 34.2220 & 34-37 & 8 \\
\hline gS 33.4137 & 33 & 2 & gS 34.2240 & 34-37 & 8 \\
\hline gS 33.4139 & 33 & 2 & gS 34.2280 & 34-37 & 8 \\
\hline gS 33.4200 & 33 & 4 & gS 34.2300 & 34-37 & 8 \\
\hline gS 33.4201 & 33 & 4 & gS 34.2405 & 34-37 & 5 \\
\hline gS 33.4202 & 33 & 4 & gS 34.2417 & 34-37 & 5 \\
\hline gS 33.4210 & 33 & 4 & gS 34.2420 & 34-37 & 5 \\
\hline gS 33.4211 & 33 & 4 & gS 34.2422 & 34-37 & 6 \\
\hline gS 33.4212 & 33 & 4 & gS 34.2423 & 34-37 & 6 \\
\hline gS 33.4220 & 33 & 4 & gS 34.2435 & 34-37 & 6 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
part number & section & page \\
\hline gS 34.2436 & \(34-37\) & 6 \\
gS 34.2980 & \(34-37\) & 7 \\
gS 34.3020 & \(34-37\) & 7 \\
gS 34.3040 & \(34-37\) & 7 \\
gS 34.3060 & \(34-37\) & 7 \\
gS 34.3080 & \(34-37\) & 7 \\
gS 34.3120 & \(34-37\) & 7 \\
gS 34.3140 & \(34-37\) & 7 \\
gS 34.3160 & \(34-37\) & 7 \\
gS 34.3437 & \(34-37\) & 6 \\
gS 34.4380 & \(34-37\) & 18 \\
gS 34.4580 & \(34-37\) & 8 \\
gS 34.4600 & \(34-37\) & 8 \\
gS 34.4620 & \(34-37\) & 8 \\
gS 34.4640 & \(34-37\) & 8 \\
gS 34.9230 & \(34-37\) & 1 \\
gS 34.9240 & \(34-37\) & 1 \\
gS 34.9260 & \(34-37\) & 1 \\
35 & & \\
gS 35.2920 & \(34-37\) & 32 \\
gS 35.2940 & \(34-37\) & 33 \\
gS 35.2960 & \(34-37\) & 33 \\
gS 35.2980 & \(34-37\) & 33 \\
gS 35.3000 & \(34-37\) & 32 \\
gS 35.3121 & \(34-37\) & 16 \\
gS 35.3122 & \(34-37\) & 16 \\
gS 35.3131 & \(34-37\) & 16 \\
gS 35.3132 & \(34-37\) & 16 \\
gS 35.3141 & \(34-37\) & 16 \\
gS 35.3142 & \(34-37\) & 16 \\
gS 35.3161 & \(34-37\) & 16 \\
gS 35.3162 & \(34-37\) & 16 \\
gS 35.3932 & \(34-37\) & 28 \\
gS 35.3940 & \(34-37\) & 28 \\
36 & & \\
gS 36.0000 & \(34-37\) & 28 \\
gS 36.0001 & \(34-37\) & 28 \\
gS 36.0030 & \(34-37\) & 28 \\
gS 36.0035 & \(34-37\) & 28 \\
gS 36.1580 & \(34-37\) & 38 \\
gS 36.1590 & \(34-37\) & 38 \\
gS 36.1600 & \(34-37\) & 38 \\
gS 36.1610 & \(34-37\) & 38 \\
gS 36.1724 & \(34-37\) & 17 \\
gS 36.1780 & \(34-37\) & 17 \\
gS 36.1800 & \(34-37\) & 17 \\
gS 36.1802 & \(34-37\) & 17 \\
gS 36.1804 & \(34-37\) & 17 \\
gS 36.2000 & \(34-37\) & 9 \\
gS 36.2040 & \(34-37\) & 9 \\
gS 36.2080 & \(34-37\) & 9 \\
gS 36.2120 & \(34-37\) & 9 \\
gS 36.2128 & \(34-37\) & 9 \\
gS 36.2130 & \(34-37\) & 9 \\
gS 36.2132 & \(34-37\) & 9 \\
gS 36.2134 & \(34-37\) & 9 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline gS 36.3504 & 34-37 & 22 \\
\hline gS 36.3507 & 34-37 & 22 \\
\hline gS 36.3512 & 34-37 & 21 \\
\hline gS 36.3514 & 34-37 & 21 \\
\hline gS 36.3516 & 34-37 & 21 \\
\hline gS 36.3518 & 34-37 & 21 \\
\hline gS 36.3530 & 34-37 & 21 \\
\hline gS 36.3532 & 34-37 & 21 \\
\hline gS 36.3540 & 34-37 & 18 \\
\hline gS 36.3580 & 34-37 & 18 \\
\hline gS 36.3620 & 34-37 & 18 \\
\hline gS 36.3640 & 34-37 & 18 \\
\hline gS 36.3660 & 34-37 & 18 \\
\hline gS 36.3670 & 34-37 & 18 \\
\hline gS 36.3676 & 34-37 & 18 \\
\hline gS 36.3680 & 34-37 & 18 \\
\hline gS 36.3720 & 34-37 & 18 \\
\hline gS 36.3740 & 34-37 & 18 \\
\hline gS 36.3760 & 34-37 & 18 \\
\hline gS 36.3780 & 34-37 & 18 \\
\hline gS 36.3820 & 34-37 & 17 \\
\hline gS 36.3842 & 34-37 & 18 \\
\hline gS 36.3844 & 34-37 & 18 \\
\hline gS 36.3846 & 34-37 & 18 \\
\hline gS 36.3848 & 34-37 & 18 \\
\hline gS 36.4061 & 34-37 & 17 \\
\hline gS 36.4720 & 34-37 & 16 \\
\hline gS 36.4760 & 34-37 & 14 \\
\hline gS 36.4788 & 34-37 & 32 \\
\hline gS 36.4790 & 34-37 & 32 \\
\hline gS 36.4791 & 34-37 & 32 \\
\hline gS 36.4792 & 34-37 & 32 \\
\hline gS 36.4880 & 34-37 & 14 \\
\hline gS 36.5550 & 34-37 & 32 \\
\hline gS 36.5560 & 34-37 & 32 \\
\hline gS 36.5580 & 34-37 & 32 \\
\hline gS 36.5600 & 34-37 & 32 \\
\hline gS 36.5735 & 34-37 & 13 \\
\hline gS 36.5800 & 34-37 & 13 \\
\hline gS 36.5820 & 34-37 & 14 \\
\hline gS 36.5940 & 34-37 & 14 \\
\hline gS 36.6030 & 34-37 & 13 \\
\hline gS 36.6035 & 34-37 & 13 \\
\hline gS 36.6100 & 34-37 & 15 \\
\hline gS 36.6140 & 34-37 & 4 \\
\hline gS 36.6150 & 34-37 & 4 \\
\hline gS 36.6160 & 34-37 & 4 \\
\hline gS 36.6200 & 34-37 & 9 \\
\hline gS 36.6210 & 34-37 & 12 \\
\hline gS 36.6230 & 34-37 & 12 \\
\hline gS 36.6232 & 34-37 & 12 \\
\hline gS 36.6238 & 34-37 & 12 \\
\hline gS 36.6240 & 34-37 & 13 \\
\hline gS 36.6280 & 34-37 & 9 \\
\hline gS 36.6300 & 34-37 & 10 \\
\hline gS 36.6320 & 34-37 & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline gS 36.6340 & 34-37 & 10 \\
\hline gS 36.6360 & 34-37 & 11 \\
\hline gS 36.6362 & 34-37 & 11 \\
\hline gS 36.6380 & 34-37 & 10 \\
\hline gS 36.6410 & 34-37 & 11 \\
\hline gS 36.6420 & 34-37 & 12 \\
\hline gS 36.6436 & 34-37 & 11 \\
\hline gS 36.6438 & 34-37 & 11 \\
\hline gS 36.6440 & 34-37 & 11 \\
\hline gS 36.6507 & 34-37 & 11 \\
\hline gS 36.6509 & 34-37 & 11 \\
\hline gS 36.6513 & 34-37 & 11 \\
\hline gS 36.8518 & 34-37 & 3 \\
\hline gS 36.8520 & 34-37 & 3 \\
\hline gS 36.8522 & 34-37 & 3 \\
\hline gS 36.8524 & 34-37 & 3 \\
\hline gS 36.8550 & 34-37 & 3 \\
\hline gS 36.8560 & 34-37 & 3 \\
\hline gS 36.8561 & 34-37 & 3 \\
\hline gS 36.8563 & 34-37 & 3 \\
\hline gS 36.8564 & 34-37 & 3 \\
\hline gS 36.8565 & 34-37 & 3 \\
\hline gS 36.8660 & 34-37 & 3 \\
\hline gS 36.8680 & 34-37 & 3 \\
\hline gS 36.8700 & 34-37 & 3 \\
\hline gS 36.8720 & 34-37 & 3 \\
\hline gS 36.8722 & 34-37 & 3 \\
\hline gS 36.8760 & 34-37 & 3 \\
\hline gS 36.8762 & 34-37 & 3 \\
\hline gS 36.8764 & 34-37 & 3 \\
\hline gS 36.9108 & 34-37 & 35 \\
\hline gS 36.9110 & 34-37 & 36 \\
\hline gS 36.9119 & 34-37 & 36 \\
\hline gS 36.9127 & 34-37 & 35 \\
\hline gS 36.9270 & 34-37 & 1 \\
\hline gS 36.9300 & 34-37 & 1 \\
\hline gS 36.9320 & 34-37 & 1 \\
\hline gS 36.9340 & 34-37 & 2 \\
\hline gS 36.9345 & 34-37 & 2 \\
\hline gS 36.9350 & 34-37 & 2 \\
\hline gS 36.9355 & 34-37 & 2 \\
\hline gS 36.9362 & 34-37 & 26 \\
\hline gS 36.9365 & 34-37 & 46 \\
\hline gS 36.9370 & 34-37 & 46 \\
\hline gS 36.9378 & 34-37 & 47 \\
\hline gS 36.9380 & 34-37 & 47 \\
\hline gS 36.9382 & 34-37 & 48 \\
\hline gS 36.9384 & 34-37 & 48 \\
\hline gS 36.9387 & 34-37 & 43 \\
\hline gS 36.9390 & 34-37 & 43 \\
\hline gS 36.9407 & 34-37 & 51 \\
\hline gS 36.9410 & 34-37 & 52 \\
\hline gS 36.9430 & 34-37 & 52 \\
\hline gS 36.9442 & 34-37 & 49 \\
\hline gS 36.9475 & 34-37 & 54 \\
\hline gS 36.9480 & 34-37 & 51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & ge \\
\hline gS 36.9482 & 34-37 & 50 & gS 37.3080 & 34-37 & 40 \\
\hline gS 36.9488 & 34-37 & 50 & gS 37.3100 & 34-37 & 40 \\
\hline gS 36.9490 & 34-37 & 54 & gS 37.3120 & 34-37 & 40 \\
\hline gS 36.9500 & 34-37 & 53 & gS 37.3140 & 34-37 & 40 \\
\hline gS 36.9505 & 34-37 & 53 & gS 37.3150 & 34-37 & 40 \\
\hline gS 36.9510 & 34-37 & 44 & gS 37.3160 & 34-37 & 41 \\
\hline gS 36.9518 & 34-37 & 56 & gS 37.3180 & 34-37 & 41 \\
\hline gS 36.9520 & 34-37 & 56 & 38 & & \\
\hline gS 36.9540 & 34-37 & 55 & gS 38.4800 & 38-40 & 37 \\
\hline gS 36.9622 & 34-37 & 45 & gS 38.4802 & 38-40 & 37 \\
\hline gS 36.9700 & 34-37 & 27 & gS 38.4804 & 38-40 & 37 \\
\hline gS 36.9720 & 34-37 & 27 & gS 38.4806 & 38-40 & 37 \\
\hline gS 36.9729 & 34-37 & 29 & gS 38.5140 & 38-40 & 1 \\
\hline gS 36.9730 & 34-37 & 29 & gS 38.5150 & 38-40 & 1 \\
\hline gS 36.9731 & 34-37 & 29 & gS 38.5160 & 38-40 & 1 \\
\hline gS 36.9738 & 34-37 & 31 & gS 38.5165 & 38-40 & 1 \\
\hline gS 36.9740 & 34-37 & 31 & gS 38.5170 & 38-40 & 1 \\
\hline gS 36.9750 & 34-37 & 27 & gS 38.5180 & 38-40 & 1 \\
\hline gS 36.9760 & 34-37 & 27 & gS 38.5185 & 38-40 & 1 \\
\hline gS 36.9790 & 34-37 & 29 & gS 38.5186 & 38-40 & 1 \\
\hline gS 36.9793 & 34-37 & 29 & gS 38.5190 & 38-40 & 1 \\
\hline gS 36.9800 & 34-37 & 38 & gS 38.5191 & 38-40 & , \\
\hline gS 36.9840 & 34-37 & 38 & gS 38.5192 & 38-40 & 2 \\
\hline gS 36.9920 & 34-37 & 42 & gS 38.5193 & 38-40 & 2 \\
\hline gS 36.9946 & 34-37 & 30 & gS 38.5195 & 38-40 & 2 \\
\hline gS 36.9950 & 34-37 & 30 & gS 38.5219 & 38-40 & 2 \\
\hline gS 36.9952 & 34-37 & 30 & gS 38.5220 & 38-40 & 2 \\
\hline gS 36.9956 & 34-37 & 30 & gS 38.5300 & 38-40 & 4 \\
\hline gS 36.9962 & 34-37 & 30 & gS 38.5490 & 38-40 & 4 \\
\hline gS 36.9973 & 34-37 & 30 & gS 38.5500 & 38-40 & 2 \\
\hline 37 & & & gS 38.5670 & 38-40 & 4 \\
\hline gS 37.0042 & 34-37 & 3 & gS 38.5814 & 38-40 & 10 \\
\hline gS 37.0043 & 34-37 & 3 & gS 38.5816 & 38-40 & 10 \\
\hline gS 37.0044 & 34-37 & 3 & gS 38.5825 & 38-40 & 10 \\
\hline gS 37.0045 & 34-37 & 3 & gS 38.5826 & 38-40 & 10 \\
\hline gS 37.0046 & 34-37 & 3 & gS 38.5830 & 38-40 & 10 \\
\hline gS 37.0047 & 34-37 & 3 & gS 38.5831 & 38-40 & 10 \\
\hline gS 37.0048 & 34-37 & 3 & gS 38.5920 & 38-40 & 10 \\
\hline gS 37.0049 & 34-37 & 3 & gS 38.5940 & 38-40 & 10 \\
\hline gS 37.1006 & 34-37 & 2 & gS 38.5980 & 38-40 & 10 \\
\hline gS 37.1009 & 34-37 & 2 & gS 38.6020 & 38-40 & 10 \\
\hline gS 37.1011 & 34-37 & 2 & gS 38.6040 & 38-40 & 10 \\
\hline gS 37.1014 & 34-37 & 2 & gS 38.6060 & 38-40 & 10 \\
\hline gS 37.2100 & 34-37 & 42 & gS 38.6180 & 38-40 & 10 \\
\hline gS 37.2210 & 34-37 & 42 & gS 38.6220 & 38-40 & 10 \\
\hline gS 37.2212 & 34-37 & 42 & gS 38.6240 & 38-40 & 10 \\
\hline gS 37.2214 & 34-37 & 42 & gS 38.6260 & 38-40 & 10 \\
\hline gS 37.3010 & 34-37 & 37 & gS 38.6280 & 38-40 & 11 \\
\hline gS 37.3011 & 34-37 & 37 & gS 38.6350 & 38-40 & 11 \\
\hline gS 37.3020 & 34-37 & 34 & gS 38.6360 & 38-40 & 11 \\
\hline gS 37.3040 & 34-37 & 34 & gS 38.6362 & 38-40 & 11 \\
\hline gS 37.3060 & 34-37 & 34 & gS 38.7276 & 38-40 & 11 \\
\hline gS 37.3064 & 34-37 & 34 & gS 38.8760 & 38-40 & 5 \\
\hline gS 37.3068 & 34-37 & 33 & gS 38.8780 & 38-40 & 5 \\
\hline gS 37.3070 & 34-37 & 33 & gS 38.8790 & 38-40 & 5 \\
\hline gS 37.3072 & 34-37 & 40 & gS 38.8793 & 38-40 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 38.8795 & 38-40 & 3 & gS 40.2412 & 38-40 & 19 \\
\hline gS 38.8797 & 38-40 & 3 & gS 40.2414 & 38-40 & 19 \\
\hline gS 38.8799 & 38-40 & 3 & gS 40.2590 & 38-40 & 18 \\
\hline gS 38.8800 & 38-40 & 5 & gS 40.2610 & 38-40 & 18 \\
\hline gS 38.8804 & 38-40 & 5 & gS 40.2611 & 38-40 & 18 \\
\hline gS 38.8810 & 38-40 & 5 & gS 40.3120 & 38-40 & 19 \\
\hline gS 38.8820 & 38-40 & 5 & gS 40.3150 & 38-40 & 20 \\
\hline gS 38.8830 & 38-40 & 5 & gS 40.3160 & 38-40 & 17 \\
\hline gS 38.8918 & 38-40 & 6 & gS 40.3170 & 38-40 & 20 \\
\hline gS 38.9018 & 38-40 & 17 & gS 40.3180 & 38-40 & 20 \\
\hline gS 38.9020 & 38-40 & 17 & gS 40.3190 & 38-40 & 21 \\
\hline 40 & & & gS 40.3192 & 38-40 & 21 \\
\hline gS 40.1010 & 38-40 & 27 & gS 40.3195 & 38-40 & 21 \\
\hline gS 40.1012 & 38-40 & 27 & gS 40.3210 & 38-40 & 18 \\
\hline gS 40.1016 & 38-40 & 27 & gS 40.3212 & 38-40 & 18 \\
\hline gS 40.1020 & 38-40 & 27 & gS 40.3220 & 38-40 & 18 \\
\hline gS 40.1022 & 38-40 & 27 & gS 40.3222 & 38-40 & 18 \\
\hline gS 40.1026 & 38-40 & 27 & gS 40.3260 & 38-40 & 22 \\
\hline gS 40.1027 & 38-40 & 24 & gS 40.3265 & 38-40 & 22 \\
\hline gS 40.1029 & 38-40 & 24 & gS 40.3270 & 38-40 & 22 \\
\hline gS 40.1030 & 38-40 & 28 & gS 40.3275 & 38-40 & 22 \\
\hline gS 40.1035 & 38-40 & 28 & gS 40.3300 & 38-40 & 20 \\
\hline gS 40.1040 & 38-40 & 28 & gS 40.3321 & 38-40 & 23 \\
\hline gS 40.1042 & 38-40 & 28 & gS 40.3323 & 38-40 & 23 \\
\hline gS 40.1052 & 38-40 & 28 & gS 40.3418 & 38-40 & 25 \\
\hline gS 40.1054 & 38-40 & 28 & gS 40.3428 & 38-40 & 25 \\
\hline gS 40.1056 & 38-40 & 28 & gS 40.3490 & 38-40 & 3 \\
\hline gS 40.1058 & 38-40 & 28 & gS 40.3500 & 38-40 & 23 \\
\hline gS 40.1100 & 38-40 & 25 & gS 40.3555 & 38-40 & 26 \\
\hline gS 40.1120 & 38-40 & 25 & gS 40.3565 & 38-40 & 26 \\
\hline gS 40.2000 & 38-40 & 30 & gS 40.3655 & 38-40 & 26 \\
\hline gS 40.2030 & 38-40 & 30 & gS 40.3665 & 38-40 & 26 \\
\hline gS 40.2040 & 38-40 & 30 & gS 40.4760 & 38-40 & 16 \\
\hline gS 40.2050 & 38-40 & 30 & gS 40.5420 & 38-40 & 12 \\
\hline gS 40.2060 & 38-40 & 30 & gS 40.5430 & 38-40 & 12 \\
\hline gS 40.2070 & 38-40 & 30 & gS 40.5440 & 38-40 & 12 \\
\hline gS 40.2080 & 38-40 & 30 & gS 40.5445 & 38-40 & 12 \\
\hline gS 40.2130 & 38-40 & 30 & gS 40.5450 & 38-40 & 13 \\
\hline gS 40.2140 & 38-40 & 30 & gS 40.5459 & 38-40 & 34 \\
\hline gS 40.2150 & 38-40 & 30 & gS 40.5460 & 38-40 & 34 \\
\hline gS 40.2160 & 38-40 & 30 & gS 40.5470 & 38-40 & 34 \\
\hline gS 40.2170 & 38-40 & 30 & gS 40.5480 & 38-40 & 34 \\
\hline gS 40.2180 & 38-40 & 30 & gS 40.5490 & 38-40 & 34 \\
\hline gS 40.2220 & 38-40 & 30 & gS 40.5500 & 38-40 & 34 \\
\hline gS 40.2230 & 38-40 & 30 & gS 40.5510 & 38-40 & 34 \\
\hline gS 40.2240 & 38-40 & 30 & gS 40.5520 & 38-40 & 34 \\
\hline gS 40.2250 & 38-40 & 30 & gS 40.5530 & 38-40 & 34 \\
\hline gS 40.2260 & 38-40 & 30 & gS 40.5540 & 38-40 & 34 \\
\hline gS 40.2270 & 38-40 & 30 & gS 40.5560 & 38-40 & 34 \\
\hline gS 40.2320 & 38-40 & 30 & gS 40.5570 & 38-40 & 34 \\
\hline gS 40.2330 & 38-40 & 30 & gS 40.5580 & 38-40 & 34 \\
\hline gS 40.2340 & 38-40 & 30 & gS 40.5590 & 38-40 & 34 \\
\hline gS 40.2350 & 38-40 & 30 & gS 40.5600 & 38-40 & 34 \\
\hline gS 40.2360 & 38-40 & 30 & gS 40.5610 & 38-40 & 35 \\
\hline gS 40.2370 & 38-40 & 30 & gS 40.5620 & 38-40 & 35 \\
\hline gS 40.2410 & 38-40 & 19 & gS 40.5630 & 38-40 & 35 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline part number & section & page \\
\hline gS 40.5640 & 38-40 & 35 \\
\hline gS 40.5650 & 38-40 & 35 \\
\hline gS 40.5660 & 38-40 & 35 \\
\hline gS 40.5670 & 38-40 & 35 \\
\hline gS 40.5680 & 38-40 & 35 \\
\hline gS 40.5690 & 38-40 & 35 \\
\hline gS 40.5710 & 38-40 & 35 \\
\hline gS 40.5720 & 38-40 & 35 \\
\hline gS 40.5730 & 38-40 & 35 \\
\hline gS 40.5740 & 38-40 & 35 \\
\hline gS 40.5750 & 38-40 & 35 \\
\hline gS 40.5760 & 38-40 & 35 \\
\hline gS 40.5820 & 38-40 & 16 \\
\hline gS 40.5840 & 38-40 & 16 \\
\hline gS 40.5842 & 38-40 & 16 \\
\hline gS 40.5860 & 38-40 & 15 \\
\hline gS 40.5880 & 38-40 & 15 \\
\hline gS 40.5900 & 38-40 & 15 \\
\hline gS 40.5902 & 38-40 & 15 \\
\hline gS 40.6000 & 38-40 & 31 \\
\hline gS 40.6001 & 38-40 & 31 \\
\hline gS 40.6002 & 38-40 & 31 \\
\hline gS 40.6003 & 38-40 & 31 \\
\hline gS 40.6004 & 38-40 & 31 \\
\hline gS 40.6011 & 38-40 & 31 \\
\hline gS 40.6012 & 38-40 & 31 \\
\hline gS 40.6013 & 38-40 & 31 \\
\hline gS 40.6100 & 38-40 & 16 \\
\hline gS 40.6320 & 38-40 & 15 \\
\hline gS 40.6410 & 38-40 & 15 \\
\hline gS 40.6420 & 38-40 & 15 \\
\hline gS 40.6500 & 38-40 & 15 \\
\hline gS 40.6502 & 38-40 & 15 \\
\hline gS 40.6504 & 38-40 & 15 \\
\hline gS 40.6506 & 38-40 & 15 \\
\hline gS 40.6508 & 38-40 & 15 \\
\hline gS 40.6990 & 38-40 & 13 \\
\hline gS 40.7180 & 38-40 & 13 \\
\hline gS 40.7181 & 38-40 & 13 \\
\hline gS 40.7232 & 38-40 & 13 \\
\hline gS 40.7234 & 38-40 & 13 \\
\hline gS 40.7236 & 38-40 & 13 \\
\hline gS 40.7238 & 38-40 & 13 \\
\hline gS 40.7350 & 38-40 & 14 \\
\hline gS 40.7352 & 38-40 & 14 \\
\hline gS 40.7360 & 38-40 & 14 \\
\hline gS 40.7362 & 38-40 & 14 \\
\hline gS 40.7370 & 38-40 & 14 \\
\hline gS 40.7372 & 38-40 & 14 \\
\hline gS 40.7380 & 38-40 & 14 \\
\hline gS 40.7382 & 38-40 & 14 \\
\hline gS 40.7505 & 38-40 & 29 \\
\hline gS 40.7510 & 38-40 & 29 \\
\hline gS 40.7515 & 38-40 & 29 \\
\hline gS 40.7520 & 38-40 & 29 \\
\hline gS 40.7522 & 38-40 & 29 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline umber & section & page \\
\hline gS 40.7524 & 38-40 & 29 \\
\hline gS 40.7526 & 38-40 & 29 \\
\hline gS 40.7530 & 38-40 & 29 \\
\hline gS 40.7532 & 38-40 & 29 \\
\hline gS 40.7534 & 38-40 & 29 \\
\hline gS 40.7536 & 38-40 & 29 \\
\hline gS 40.7610 & 38-40 & 33 \\
\hline gS 40.7625 & 38-40 & 32 \\
\hline gS 40.7631 & 38-40 & 33 \\
\hline gS 40.7644 & 38-40 & 32 \\
\hline gS 40.7647 & 38-40 & 32 \\
\hline gS 40.7648 & 38-40 & 32 \\
\hline gS 40.7649 & 38-40 & 32 \\
\hline gS 40.7650 & 38-40 & 32 \\
\hline gS 40.7651 & 38-40 & 32 \\
\hline gS 40.7652 & 38-40 & 32 \\
\hline gS 40.7653 & 38-40 & 32 \\
\hline gS 40.7654 & 38-40 & 32 \\
\hline gS 40.7655 & 38-40 & 32 \\
\hline gS 40.7656 & 38-40 & 32 \\
\hline gS 40.7657 & 38-40 & 32 \\
\hline gS 40.7658 & 38-40 & 32 \\
\hline gS 40.7659 & 38-40 & 32 \\
\hline gS 40.7660 & 38-40 & 32 \\
\hline gS 40.7661 & 38-40 & 32 \\
\hline gS 40.7662 & 38-40 & 32 \\
\hline gS 40.7663 & 38-40 & 32 \\
\hline gS 40.7664 & 38-40 & 32 \\
\hline gS 40.7665 & 38-40 & 32 \\
\hline gS 40.7666 & 38-40 & 32 \\
\hline gS 40.7667 & 38-40 & 32 \\
\hline gS 40.7668 & 38-40 & 32 \\
\hline gS 40.7669 & 38-40 & 32 \\
\hline gS 40.7670 & 38-40 & 32 \\
\hline gS 40.7671 & 38-40 & 32 \\
\hline gS 40.7672 & 38-40 & 32 \\
\hline gS 40.7673 & 38-40 & 32 \\
\hline gS 40.7674 & 38-40 & 32 \\
\hline gS 40.7675 & 38-40 & 32 \\
\hline gS 40.7676 & 38-40 & 32 \\
\hline gS 40.7677 & 38-40 & 32 \\
\hline gS 40.7678 & 38-40 & 32 \\
\hline gS 40.7690 & 38-40 & 32 \\
\hline gS 40.8350 & 38-40 & 14 \\
\hline gS 40.8352 & 38-40 & 14 \\
\hline gS 40.8360 & 38-40 & 14 \\
\hline gS 40.8362 & 38-40 & 14 \\
\hline gS 40.8570 & 38-40 & 8 \\
\hline gS 40.8572 & 38-40 & 8 \\
\hline gS 40.8608 & 38-40 & 7 \\
\hline gS 40.8610 & 38-40 & 7 \\
\hline gS 40.8612 & 38-40 & 7 \\
\hline gS 40.8618 & 38-40 & 8 \\
\hline gS 40.8620 & 38-40 & 8 \\
\hline gS 40.8622 & 38-40 & 8 \\
\hline gS 40.8628 & 38-40 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline part number & section & page \\
\hline gS 40.8632 & 38-40 & 9 \\
\hline gS 40.8638 & 38-40 & 9 \\
\hline gS 40.8640 & 38-40 & 9 \\
\hline gS 40.8642 & 38-40 & 9 \\
\hline gS 40.8648 & 38-40 & 9 \\
\hline gS 40.8670 & 38-40 & 6 \\
\hline gS 40.8710 & 38-40 & 6 \\
\hline gS 40.8801 & 38-40 & 33 \\
\hline gS 40.8802 & 38-40 & 33 \\
\hline gS 40.8803 & 38-40 & 33 \\
\hline gS 40.8804 & 38-40 & 33 \\
\hline gS 40.8805 & 38-40 & 33 \\
\hline gS 40.8806 & 38-40 & 33 \\
\hline gS 40.8807 & 38-40 & 33 \\
\hline gS 40.8808 & 38-40 & 33 \\
\hline gS 40.8809 & 38-40 & 33 \\
\hline gS 40.8830 & 38-40 & 33 \\
\hline gS 40.8831 & 38-40 & 33 \\
\hline gS 40.8832 & 38-40 & 33 \\
\hline gS 40.8833 & 38-40 & 33 \\
\hline gS 40.8834 & 38-40 & 33 \\
\hline gS 40.8835 & 38-40 & 33 \\
\hline gS 40.8836 & 38-40 & 33 \\
\hline gS 40.8837 & 38-40 & 33 \\
\hline gS 40.8838 & 38-40 & 33 \\
\hline gS 40.8901 & 38-40 & 35 \\
\hline gS 40.8902 & 38-40 & 35 \\
\hline gS 40.8903 & 38-40 & 35 \\
\hline gS 40.9002 & 38-40 & 35 \\
\hline gS 40.9004 & 38-40 & 36 \\
\hline gS 40.9020 & 38-40 & 36 \\
\hline gS 40.9030 & 38-40 & 36 \\
\hline gS 40.9100 & 38-40 & 37 \\
\hline gS 40.9202 & 38-40 & 38 \\
\hline gS 40.9204 & 38-40 & 38 \\
\hline gS 40.9210 & 38-40 & 38 \\
\hline gS 40.9214 & 38-40 & 38 \\
\hline gS 40.9215 & 38-40 & 38 \\
\hline gS 40.9218 & 38-40 & 38 \\
\hline gS 40.9220 & 38-40 & 38 \\
\hline gS 40.9224 & 38-40 & 38 \\
\hline gS 40.9225 & 38-40 & 38 \\
\hline gS 40.9228 & 38-40 & 38 \\
\hline gS 40.9280 & 38-40 & 38 \\
\hline gS 40.9282 & 38-40 & 38 \\
\hline gS 40.9320 & 38-40 & 37 \\
\hline gS 40.9502 & 38-40 & 39 \\
\hline gS 40.9503 & 38-40 & 39 \\
\hline gS 40.9504 & 38-40 & 39 \\
\hline gS 40.9505 & 38-40 & 39 \\
\hline gS 40.9506 & 38-40 & 39 \\
\hline gS 40.9510 & 38-40 & 39 \\
\hline \multicolumn{3}{|l|}{42} \\
\hline gS 42.1750 & 42-43 & 6 \\
\hline gS 42.1760 & 42-43 & 6 \\
\hline gS 42.5940 & 42-43 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline gS 42.5950 & 42-43 & 1 \\
\hline gS 42.5980 & 42-43 & 1 \\
\hline gS 42.6020 & 42-43 & 1 \\
\hline gS 42.6120 & 42-43 & 2 \\
\hline gS 42.6121 & 42-43 & 2 \\
\hline gS 42.6130 & 42-43 & 4 \\
\hline gS 42.6140 & 42-43 & 2 \\
\hline gS 42.6180 & 42-43 & 1 \\
\hline gS 42.6220 & 42-43 & 3 \\
\hline gS 42.6221 & 42-43 & 3 \\
\hline gS 42.6222 & 42-43 & 4 \\
\hline gS 42.6223 & 42-43 & 4 \\
\hline gS 42.6224 & 42-43 & 4 \\
\hline gS 42.6225 & 42-43 & 4 \\
\hline gS 42.6305 & 42-43 & 3 \\
\hline gS 42.6306 & 42-43 & 3 \\
\hline gS 42.6316 & 42-43 & 2 \\
\hline gS 42.6317 & 42-43 & 2 \\
\hline gS 42.6330 & 42-43 & 2 \\
\hline gS 42.6790 & 42-43 & 5 \\
\hline gS 42.6900 & 42-43 & 5 \\
\hline gS 42.7130 & 42-43 & 8 \\
\hline gS 42.7132 & 42-43 & 8 \\
\hline gS 42.7140 & 42-43 & 7 \\
\hline gS 42.7143 & 42-43 & 8 \\
\hline gS 42.7145 & 42-43 & 8 \\
\hline gS 42.7150 & 42-43 & 13 \\
\hline gS 42.7152 & 42-43 & 13 \\
\hline gS 42.7160 & 42-43 & 10 \\
\hline gS 42.7165 & 42-43 & 8 \\
\hline gS 42.7169 & 42-43 & 11 \\
\hline gS 42.7170 & 42-43 & 11 \\
\hline gS 42.7171 & 42-43 & 11 \\
\hline gS 42.7172 & 42-43 & 11 \\
\hline gS 42.7180 & 42-43 & 11 \\
\hline gS 42.7230 & 42-43 & 13 \\
\hline gS 42.7418 & 42-43 & 10 \\
\hline gS 42.7420 & 42-43 & 10 \\
\hline gS 42.7523 & 42-43 & 9 \\
\hline gS 42.7690 & 42-43 & 9 \\
\hline gS 42.7716 & 42-43 & 16 \\
\hline gS 42.7719 & 42-43 & 16 \\
\hline gS 42.7810 & 42-43 & 15 \\
\hline gS 42.7816 & 42-43 & 15 \\
\hline gS 42.8590 & 42-43 & 6 \\
\hline gS 42.8600 & 42-43 & 6 \\
\hline gS 42.8620 & 42-43 & 6 \\
\hline gS 42.8640 & 42-43 & 6 \\
\hline gS 42.8660 & 42-43 & 6 \\
\hline 43 & & \\
\hline gS 43.1850 & 42-43 & 22 \\
\hline gS 43.1852 & 42-43 & 22 \\
\hline gS 43.1942 & 42-43 & 25 \\
\hline gS 43.1943 & 42-43 & 25 \\
\hline gS 43.1944 & 42-43 & 25 \\
\hline gS 43.1965 & 42-43 & 25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline part number & section & page \\
\hline gS 43.2060 & 42-43 & 26 \\
\hline gS 43.2080 & 42-43 & 26 \\
\hline gS 43.2100 & 42-43 & 26 \\
\hline gS 43.2120 & 42-43 & 26 \\
\hline gS 43.2258 & 42-43 & 27 \\
\hline gS 43.2259 & 42-43 & 27 \\
\hline gS 43.2260 & 42-43 & 27 \\
\hline gS 43.2261 & 42-43 & 27 \\
\hline gS 43.2281 & 42-43 & 22 \\
\hline gS 43.2282 & 42-43 & 23 \\
\hline gS 43.2283 & 42-43 & 23 \\
\hline gS 43.2284 & 42-43 & 23 \\
\hline gS 43.2287 & 42-43 & 23 \\
\hline gS 43.2306 & 42-43 & 21 \\
\hline gS 43.2410 & 42-43 & 18 \\
\hline gS 43.2420 & 42-43 & 18 \\
\hline gS 43.2430 & 42-43 & 18 \\
\hline gS 43.2440 & 42-43 & 18 \\
\hline gS 43.3010 & 42-43 & 15 \\
\hline gS 43.3020 & 42-43 & 15 \\
\hline gS 43.3048 & 42-43 & 9 \\
\hline gS 43.3050 & 42-43 & 5 \\
\hline gS 43.3052 & 42-43 & 5 \\
\hline gS 43.3060 & 42-43 & 19 \\
\hline gS 43.3070 & 42-43 & 19 \\
\hline gS 43.3110 & 42-43 & 19 \\
\hline gS 43.3120 & 42-43 & 19 \\
\hline gS 43.3130 & 42-43 & 20 \\
\hline gS 43.3140 & 42-43 & 20 \\
\hline gS 43.3150 & 42-43 & 20 \\
\hline gS 43.3160 & 42-43 & 20 \\
\hline gS 43.3170 & 42-43 & 21 \\
\hline gS 43.3185 & 42-43 & 21 \\
\hline gS 43.3186 & 42-43 & 21 \\
\hline gS 43.3188 & 42-43 & 21 \\
\hline gS 43.3190 & 42-43 & 16 \\
\hline gS 43.3192 & 42-43 & 16 \\
\hline gS 43.3205 & 42-43 & 9 \\
\hline gS 43.3220 & 42-43 & 24 \\
\hline gS 43.3222 & 42-43 & 24 \\
\hline gS 43.3224 & 42-43 & 24 \\
\hline gS 43.3240 & 42-43 & 24 \\
\hline gS 43.3440 & 42-43 & 17 \\
\hline gS 43.3450 & 42-43 & 17 \\
\hline gS 43.3460 & 42-43 & 17 \\
\hline gS 43.3480 & 42-43 & 17 \\
\hline gS 43.3500 & 42-43 & 28 \\
\hline gS 43.3520 & 42-43 & 28 \\
\hline gS 43.3540 & 42-43 & 28 \\
\hline gS 43.3560 & 42-43 & 28 \\
\hline gS 43.3575 & 42-43 & 14 \\
\hline gS 43.3580 & 42-43 & 14 \\
\hline gS 43.3600 & 42-43 & 14 \\
\hline gS 43.3620 & 42-43 & 14 \\
\hline gS 43.3630 & 42-43 & 14 \\
\hline gS 43.3640 & 42-43 & 14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline gS 43.3660 & 42-43 & 14 \\
\hline gS 43.3680 & 42-43 & 5 \\
\hline gS 43.3700 & 42-43 & 7 \\
\hline gS 43.4100 & 42-43 & 14 \\
\hline gS 43.4110 & 42-43 & 14 \\
\hline gS 43.4120 & 42-43 & 14 \\
\hline gS 43.4130 & 42-43 & 14 \\
\hline gS 43.4160 & 42-43 & 22 \\
\hline gS 43.4162 & 42-43 & 22 \\
\hline gS 43.4164 & 42-43 & 22 \\
\hline gS 43.4210 & 42-43 & 24 \\
\hline gS 43.4212 & 42-43 & 24 \\
\hline gS 43.4220 & 42-43 & 24 \\
\hline gS 43.4396 & 42-43 & 29 \\
\hline gS 43.4400 & 42-43 & 29 \\
\hline gS 43.4420 & 42-43 & 29 \\
\hline gS 43.4440 & 42-43 & 29 \\
\hline gS 43.4460 & 42-43 & 29 \\
\hline gS 43.5020 & 42-43 & 30 \\
\hline gS 43.5030 & 42-43 & 30 \\
\hline gS 43.5040 & 42-43 & 30 \\
\hline gS 43.5060 & 42-43 & 30 \\
\hline gS 43.5070 & 42-43 & 30 \\
\hline gS 43.5080 & 42-43 & 30 \\
\hline gS 43.5129 & 42-43 & 32 \\
\hline gS 43.5130 & 42-43 & 32 \\
\hline gS 43.5131 & 42-43 & 32 \\
\hline gS 43.5140 & 42-43 & 32 \\
\hline gS 43.5141 & 42-43 & 32 \\
\hline gS 43.5160 & 42-43 & 32 \\
\hline gS 43.5161 & 42-43 & 32 \\
\hline gS 43.5180 & 42-43 & 32 \\
\hline gS 43.5181 & 42-43 & 32 \\
\hline gS 43.5200 & 42-43 & 32 \\
\hline gS 43.5201 & 42-43 & 32 \\
\hline gS 43.5331 & 42-43 & 31 \\
\hline gS 43.5341 & 42-43 & 31 \\
\hline gS 43.5361 & 42-43 & 31 \\
\hline gS 43.5381 & 42-43 & 31 \\
\hline gS 43.7160 & 42-43 & 10 \\
\hline gS 43.9010 & 42-43 & 29 \\
\hline gS 43.9020 & 42-43 & 29 \\
\hline gS 43.9030 & 42-43 & 29 \\
\hline gS 43.9040 & 42-43 & 29 \\
\hline gS 43.9221 & 42-43 & 12 \\
\hline gS 43.9222 & 42-43 & 12 \\
\hline gS 43.9223 & 42-43 & 12 \\
\hline gS 43.9224 & 42-43 & 12 \\
\hline gS 43.9225 & 42-43 & 13 \\
\hline gS 43.9250 & 42-43 & 13 \\
\hline gS 43.9260 & 42-43 & 6 \\
\hline gS 43.9286 & 42-43 & 6 \\
\hline gS 43.9308 & 42-43 & 37 \\
\hline gS 43.9317 & 42-43 & 37 \\
\hline gS 43.9410 & 42-43 & 37 \\
\hline gS 43.9414 & 42-43 & 37 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 43.9420 & 42-43 & 33 & gS 46.2122 & 46-47 & 19 \\
\hline gS 43.9425 & 42-43 & 34 & gS 46.2180 & 46-47 & 1 \\
\hline gS 43.9428 & 42-43 & 35 & gS 46.2190 & 46-47 & 1 \\
\hline gS 43.9438 & 42-43 & 36 & gS 46.2210 & 46-47 & 9 \\
\hline gS 43.9817 & 42-43 & 38 & gS 46.2220 & 46-47 & 10 \\
\hline gS 43.9920 & 42-43 & 38 & gS 46.2240 & 46-47 & 10 \\
\hline gS 43.9925 & 42-43 & 38 & gS 46.2260 & 46-47 & 10 \\
\hline 44 & & & gS 46.2280 & 46-47 & 3 \\
\hline gS 44.0130 & 44 & 1 & gS 46.2282 & 46-47 & 3 \\
\hline gS 44.0140 & 44 & 1 & gS 46.2300 & 46-47 & 7 \\
\hline gS 44.0150 & 44 & 1 & gS 46.2305 & 46-47 & 7 \\
\hline gS 44.0157 & 44 & 2 & gS 46.2310 & 46-47 & 12 \\
\hline gS 44.0160 & 44 & 2 & gS 46.2312 & 46-47 & 13 \\
\hline gS 44.0220 & 44 & 2 & gS 46.2315 & 46-47 & 14 \\
\hline gS 44.4360 & 44 & 1 & gS 46.2320 & 46-47 & 5 \\
\hline gS 44.4361 & 44 & 1 & gS 46.2330 & 46-47 & 2 \\
\hline gS 44.4513 & 44 & 2 & gS 46.2332 & 46-47 & 6 \\
\hline gS 44.5200 & 44 & 2 & gS 46.2333 & 46-47 & 6 \\
\hline 45 & & & gS 46.2335 & 46-47 & 5 \\
\hline gS 45.3700 & 45 & 2 & gS 46.2340 & 46-47 & 6 \\
\hline gS 45.3702 & 45 & 2 & gS 46.2342 & 46-47 & 8 \\
\hline gS 45.3704 & 45 & 2 & gS 46.2348 & 46-47 & 6 \\
\hline gS 45.4320 & 45 & 1 & gS 46.2350 & 46-47 & 2 \\
\hline gS 45.4321 & 45 & 1 & gS 46.2370 & 46-47 & 2 \\
\hline gS 45.4340 & 45 & 1 & gS 46.2375 & 46-47 & 5 \\
\hline gS 45.4343 & 45 & 1 & gS 46.2380 & 46-47 & 12 \\
\hline gS 45.4346 & 45 & 1 & gS 46.2390 & 46-47 & 1 \\
\hline gS 45.4350 & 45 & 1 & gS 46.2395 & 46-47 & 1 \\
\hline gS 45.4420 & 45 & 2 & gS 46.2407 & 46-47 & 12 \\
\hline gS 45.4430 & 45 & 2 & gS 46.2409 & 46-47 & 12 \\
\hline gS 45.4440 & 45 & 2 & gS 46.2430 & 46-47 & 15 \\
\hline gS 45.4450 & 45 & 2 & gS 46.2432 & 46-47 & 15 \\
\hline gS 45.4460 & 45 & 2 & gS 46.2440 & 46-47 & 16 \\
\hline gS 45.4470 & 45 & 2 & gS 46.2450 & 46-47 & 16 \\
\hline 46 & & & gS 46.2470 & 46-47 & 15 \\
\hline gS 46.1620 & 46-47 & 16 & gS 46.2520 & 46-47 & 18 \\
\hline gS 46.1630 & 46-47 & 16 & gS 46.2540 & 46-47 & 18 \\
\hline gS 46.1640 & 46-47 & 16 & gS 46.2560 & 46-47 & 18 \\
\hline gS 46.1645 & 46-47 & 16 & gS 46.2650 & 46-47 & 18 \\
\hline gS 46.1650 & 46-47 & 16 & gS 46.2655 & 46-47 & 18 \\
\hline gS 46.1655 & 46-47 & 16 & gS 46.2660 & 46-47 & 18 \\
\hline gS 46.1815 & 46-47 & 17 & gS 46.3005 & 46-47 & 7 \\
\hline gS 46.1820 & 46-47 & 17 & gS 46.3008 & 46-47 & 7 \\
\hline gS 46.1832 & 46-47 & 17 & gS 46.3010 & 46-47 & 7 \\
\hline gS 46.1850 & 46-47 & 17 & gS 46.3015 & 46-47 & 7 \\
\hline gS 46.1855 & 46-47 & 17 & gS 46.3018 & 46-47 & 7 \\
\hline gS 46.1860 & 46-47 & 17 & gS 46.3020 & 46-47 & 7 \\
\hline gS 46.1900 & 46-47 & 11 & gS 46.4000 & 46-47 & 2 \\
\hline gS 46.1920 & 46-47 & 11 & gS 46.4009 & 46-47 & 3 \\
\hline gS 46.1940 & 46-47 & 11 & gS 46.4012 & 46-47 & 3 \\
\hline gS 46.1960 & 46-47 & 11 & gS 46.4016 & 46-47 & 3 \\
\hline gS 46.1980 & 46-47 & 11 & gS 46.4040 & 46-47 & 4 \\
\hline gS 46.1990 & 46-47 & 9 & gS 46.4060 & 46-47 & 4 \\
\hline gS 46.2116 & 46-47 & 19 & gS 46.4116 & 46-47 & 4 \\
\hline gS 46.2118 & 46-47 & 19 & gS 46.4117 & 46-47 & 4 \\
\hline gS 46.2120 & 46-47 & 19 & gS 46.4680 & 46-47 & 19 \\
\hline
\end{tabular}

\section*{120/10 - numeric index}
\begin{tabular}{|c|c|c|}
\hline part number & section & page \\
\hline gS 46.4685 & 46-47 & 19 \\
\hline gS 46.8510 & 46-47 & 9 \\
\hline gS 46.8520 & 46-47 & 8 \\
\hline gS 46.8870 & 46-47 & 5 \\
\hline gS 46.8872 & 46-47 & 8 \\
\hline gS 46.8910 & 46-47 & 8 \\
\hline \multicolumn{3}{|l|}{47} \\
\hline gS 47.0919 & 46-47 & 20 \\
\hline gS 47.1020 & 46-47 & 20 \\
\hline gS 47.1064 & 46-47 & 27 \\
\hline gS 47.1130 & 46-47 & 20 \\
\hline gS 47.1140 & 46-47 & 20 \\
\hline gS 47.1150 & 46-47 & 20 \\
\hline gS 47.6020 & 46-47 & 21 \\
\hline gS 47.6030 & 46-47 & 21 \\
\hline gS 47.6040 & 46-47 & 21 \\
\hline gS 47.6190 & 46-47 & 22 \\
\hline gS 47.6192 & 46-47 & 22 \\
\hline gS 47.6196 & 46-47 & 22 \\
\hline gS 47.6200 & 46-47 & 24 \\
\hline gS 47.6204 & 46-47 & 28 \\
\hline gS 47.6208 & 46-47 & 25 \\
\hline gS 47.6212 & 46-47 & 26 \\
\hline gS 47.6300 & 46-47 & 23 \\
\hline gS 47.6301 & 46-47 & 23 \\
\hline \multicolumn{3}{|l|}{49} \\
\hline gS 49.1001 & 49 & 2 \\
\hline gS 49.1002 & 49 & 2 \\
\hline gS 49.1003 & 49 & 2 \\
\hline gS 49.1004 & 49 & 2 \\
\hline gS 49.1005 & 49 & 2 \\
\hline gS 49.2018 & 49 & 5 \\
\hline gS 49.2210 & 49 & 5 \\
\hline gS 49.2220 & 49 & 5 \\
\hline gS 49.2230 & 49 & 5 \\
\hline gS 49.2280 & 49 & 8 \\
\hline gS 49.2300 & 49 & 8 \\
\hline gS 49.3025 & 49 & 4 \\
\hline gS 49.3180 & 49 & 4 \\
\hline gS 49.3300 & 49 & 1 \\
\hline gS 49.7141 & 49 & 4 \\
\hline gS 49.7142 & 49 & 4 \\
\hline gS 49.7151 & 49 & 4 \\
\hline gS 49.7152 & 49 & 4 \\
\hline gS 49.8300 & 49 & 6 \\
\hline gS 49.8350 & 49 & 7 \\
\hline gS 49.8356 & 49 & 7 \\
\hline gS 49.8400 & 49 & 6 \\
\hline gS 49.8450 & 49 & 6 \\
\hline gS 49.8455 & 49 & 6 \\
\hline gS 49.8460 & 49 & 6 \\
\hline gS 49.8500 & 49 & 3 \\
\hline gS 49.8620 & 49 & 1 \\
\hline gS 49.8660 & 49 & 1 \\
\hline gS 49.8700 & 49 & 1 \\
\hline gS 49.8800 & 49 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 51.2017 & 51 & 3 & gS 51.5094 & 51 & 11 \\
\hline gS 51.2020 & 51 & 3 & gS 51.5095 & 51 & 11 \\
\hline gS 51.2024 & 51 & 3 & gS 51.5096 & 51 & 11 \\
\hline gS 51.2027 & 51 & 3 & gS 51.5107 & 51 & 6 \\
\hline gS 51.2030 & 51 & 3 & gS 51.5108 & 51 & 6 \\
\hline gS 51.2036 & 51 & 3 & gS 51.5110 & 51 & 6 \\
\hline gS 51.2038 & 51 & 3 & gS 51.5111 & 51 & 6 \\
\hline gS 51.2070 & 51 & 2 & gS 51.5112 & 51 & 6 \\
\hline gS 51.2080 & 51 & 2 & gS 51.5113 & 51 & 6 \\
\hline gS 51.2090 & 51 & 2 & gS 51.5114 & 51 & 6 \\
\hline gS 51.2100 & 51 & 2 & gS 51.5115 & 51 & 6 \\
\hline gS 51.2110 & 51 & 2 & gS 51.5116 & 51 & 6 \\
\hline gS 51.2120 & 51 & 2 & gS 51.5221 & 51 & 7 \\
\hline gS 51.2130 & 51 & 2 & gS 51.5231 & 51 & 7 \\
\hline gS 51.2140 & 51 & 2 & gS 51.5241 & 51 & 7 \\
\hline gS 51.2150 & 51 & 2 & gS 51.5251 & 51 & 7 \\
\hline gS 51.2160 & 51 & 2 & gS 51.5261 & 51 & 7 \\
\hline gS 51.2170 & 51 & 2 & gS 51.5271 & 51 & 7 \\
\hline gS 51.2180 & 51 & 2 & gS 51.5281 & 51 & 7 \\
\hline gS 51.2190 & 51 & 1 & gS 51.5291 & 51 & 7 \\
\hline gS 51.2200 & 51 & 1 & gS 51.5301 & 51 & 7 \\
\hline gS 51.2210 & 51 & 1 & gS 51.5331 & 51 & 7 \\
\hline gS 51.2220 & 51 & 1 & gS 51.5341 & 51 & 7 \\
\hline gS 51.2230 & 51 & 1 & gS 51.5351 & 51 & 7 \\
\hline gS 51.2240 & 51 & 1 & gS 51.5361 & 51 & 7 \\
\hline gS 51.2250 & 51 & 1 & gS 51.5371 & 51 & 7 \\
\hline gS 51.2260 & 51 & 1 & gS 51.5381 & 51 & 7 \\
\hline gS 51.2270 & 51 & 1 & gS 51.5391 & 51 & 7 \\
\hline gS 51.2280 & 51 & 1 & gS 51.5401 & 51 & 7 \\
\hline gS 51.2500 & 51 & 4 & gS 51.5411 & 51 & 7 \\
\hline gS 51.2510 & 51 & 4 & gS 51.5448 & 51 & 8 \\
\hline gS 51.2520 & 51 & 4 & gS 51.5449 & 51 & 8 \\
\hline gS 51.2530 & 51 & 4 & gS 51.5450 & 51 & 8 \\
\hline gS 51.2540 & 51 & 4 & gS 51.5451 & 51 & 8 \\
\hline gS 51.2550 & 51 & 4 & gS 51.5452 & 51 & 8 \\
\hline gS 51.2560 & 51 & 4 & gS 51.5453 & 51 & 8 \\
\hline gS 51.2570 & 51 & 4 & gS 51.5454 & 51 & 8 \\
\hline gS 51.2580 & 51 & 4 & gS 51.5455 & 51 & 8 \\
\hline gS 51.3000 & 51 & 1 & gS 51.5456 & 51 & 8 \\
\hline gS 51.3020 & 51 & 1 & gS 51.5468 & 51 & 8 \\
\hline gS 51.3030 & 51 & 1 & gS 51.5469 & 51 & 8 \\
\hline gS 51.3040 & 51 & 1 & gS 51.5470 & 51 & 8 \\
\hline gS 51.4800 & 51 & 10 & gS 51.5471 & 51 & 8 \\
\hline gS 51.4801 & 51 & 10 & gS 51.5472 & 51 & 8 \\
\hline gS 51.4802 & 51 & 10 & gS 51.5473 & 51 & 8 \\
\hline gS 51.4938 & 51 & 5 & gS 51.5474 & 51 & 8 \\
\hline gS 51.5003 & 51 & 11 & gS 51.5475 & 51 & 8 \\
\hline gS 51.5005 & 51 & 11 & gS 51.5476 & 51 & 8 \\
\hline gS 51.5013 & 51 & 11 & gS 51.5481 & 51 & 3 \\
\hline gS 51.5015 & 51 & 11 & gS 51.5482 & 51 & 3 \\
\hline gS 51.5023 & 51 & 11 & gS 51.5483 & 51 & 3 \\
\hline gS 51.5025 & 51 & 11 & gS 51.5490 & 51 & 12 \\
\hline gS 51.5033 & 51 & 11 & gS 51.5492 & 51 & 12 \\
\hline gS 51.5035 & 51 & 11 & gS 51.5494 & 51 & 12 \\
\hline gS 51.5045 & 51 & 11 & gS 51.5500 & 51 & 12 \\
\hline gS 51.5055 & 51 & 11 & gS 51.5520 & 51 & 12 \\
\hline
\end{tabular}
gSource.
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & p \\
\hline gS 51.5540 & 51 & 12 & gS 51.6250 & 51 & 2 \\
\hline gS 51.5560 & 51 & 12 & gS 51.6290 & 51 & 2 \\
\hline gS 51.5580 & 51 & 12 & gS 51.6310 & 51 & 2 \\
\hline gS 51.5600 & 51 & 12 & gS 51.6400 & 51 & 2 \\
\hline gS 51.5601 & 51 & 13 & gS 51.6401 & 51 & 2 \\
\hline gS 51.5602 & 51 & 13 & gS 51.6402 & 51 & 2 \\
\hline gS 51.5603 & 51 & 13 & gS 51.6403 & 51 & 2 \\
\hline gS 51.5611 & 51 & 13 & gS 51.6404 & 51 & 2 \\
\hline gS 51.5612 & 51 & 13 & gS 51.6410 & 51 & 2 \\
\hline gS 51.5613 & 51 & 13 & gS 51.6420 & 51 & 2 \\
\hline gS 51.5620 & 51 & 12 & gS 51.6430 & 51 & 2 \\
\hline gS 51.5622 & 51 & 12 & gS 51.6440 & 51 & 2 \\
\hline gS 51.5626 & 51 & 12 & gS 51.6450 & 51 & 2 \\
\hline gS 51.5630 & 51 & 12 & gS 51.6460 & 51 & 2 \\
\hline gS 51.5632 & 51 & 12 & gS 51.6475 & 51 & 2 \\
\hline gS 51.5636 & 51 & 12 & gS 51.6476 & 51 & 2 \\
\hline gS 51.5640 & 51 & 14 & gS 51.6477 & 51 & 2 \\
\hline gS 51.5645 & 51 & 14 & gS 51.6478 & 51 & 2 \\
\hline gS 51.5650 & 51 & 14 & gS 51.6479 & 51 & 2 \\
\hline gS 51.5655 & 51 & 14 & gS 51.6480 & 51 & 2 \\
\hline gS 51.5660 & 51 & 14 & gS 51.6481 & 51 & 2 \\
\hline gS 51.5665 & 51 & 14 & gS 51.6482 & 51 & 2 \\
\hline gS 51.5670 & 51 & 14 & gS 51.6483 & 51 & 2 \\
\hline gS 51.5675 & 51 & 14 & gS 51.6484 & 51 & 2 \\
\hline gS 51.5682 & 51 & 14 & gS 51.6485 & 51 & 2 \\
\hline gS 51.5684 & 51 & 14 & gS 51.6486 & 51 & 2 \\
\hline gS 51.5708 & 51 & 7 & gS 51.6487 & 51 & 2 \\
\hline gS 51.5709 & 51 & 7 & gS 51.6488 & 51 & 2 \\
\hline gS 51.5710 & 51 & 7 & gS 51.6489 & 51 & 2 \\
\hline gS 51.5711 & 51 & 7 & gS 51.6490 & 51 & 2 \\
\hline gS 51.5712 & 51 & 7 & gS 51.6491 & 51 & 2 \\
\hline gS 51.5713 & 51 & 7 & gS 51.6492 & 51 & 2 \\
\hline gS 51.5714 & 51 & 7 & gS 51.6493 & 51 & 2 \\
\hline gS 51.5715 & 51 & 7 & gS 51.6494 & 51 & 2 \\
\hline gS 51.5716 & 51 & 7 & gS 51.6495 & 51 & 2 \\
\hline gS 51.5808 & 51 & 7 & gS 51.6496 & 51 & 2 \\
\hline gS 51.5809 & 51 & 7 & gS 51.6497 & 51 & 2 \\
\hline gS 51.5810 & 51 & 7 & gS 51.6498 & 51 & 2 \\
\hline gS 51.5811 & 51 & 7 & gS 51.6510 & 51 & 4 \\
\hline gS 51.5812 & 51 & 7 & gS 51.6520 & 51 & 4 \\
\hline gS 51.5813 & 51 & 7 & gS 51.6530 & 51 & 4 \\
\hline gS 51.5814 & 51 & 7 & gS 51.6540 & 51 & 4 \\
\hline gS 51.5815 & 51 & 7 & gS 51.6550 & 51 & 4 \\
\hline gS 51.5816 & 51 & 7 & gS 51.6560 & 51 & 4 \\
\hline gS 51.5904 & 51 & 13 & gS 51.6570 & 51 & 4 \\
\hline gS 51.5905 & 51 & 13 & gS 51.6580 & 51 & 4 \\
\hline gS 51.5913 & 51 & 13 & gS 51.6590 & 51 & 4 \\
\hline gS 51.5914 & 51 & 13 & gS 51.6600 & 51 & 1 \\
\hline gS 51.6110 & 51 & 2 & gS 51.6610 & 51 & 1 \\
\hline gS 51.6120 & 51 & 2 & gS 51.6620 & 51 & 1 \\
\hline gS 51.6130 & 51 & 2 & gS 51.6624 & 51 & 2 \\
\hline gS 51.6150 & 51 & 2 & gS 51.6626 & 51 & 2 \\
\hline gS 51.6170 & 51 & 2 & gS 51.6628 & 51 & 2 \\
\hline gS 51.6190 & 51 & 2 & gS 51.6630 & 51 & 2 \\
\hline gS 51.6210 & 51 & 2 & gS 51.6640 & 51 & 2 \\
\hline gS 51.6230 & 51 & 2 & gS 51.6650 & 51 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline gS 51.6660 & 51 & 2 \\
\hline gS 51.6670 & 51 & 2 \\
\hline gS 51.6680 & 51 & 2 \\
\hline gS 51.6690 & 51 & 2 \\
\hline gS 51.6700 & 51 & 2 \\
\hline gS 51.6710 & 51 & 2 \\
\hline gS 51.6740 & 51 & 5 \\
\hline gS 51.6760 & 51 & 5 \\
\hline gS 51.6780 & 51 & 5 \\
\hline gS 51.6790 & 51 & 5 \\
\hline gS 51.6800 & 51 & 3 \\
\hline gS 51.6820 & 51 & 3 \\
\hline gS 51.6840 & 51 & 3 \\
\hline gS 51.6851 & 51 & 3 \\
\hline gS 51.6852 & 51 & 3 \\
\hline gS 51.6853 & 51 & 3 \\
\hline gS 51.6854 & 51 & 3 \\
\hline gS 51.6855 & 51 & 3 \\
\hline gS 51.6856 & 51 & 3 \\
\hline gS 51.6862 & 51 & 4 \\
\hline gS 51.6863 & 51 & 4 \\
\hline gS 51.6864 & 51 & 4 \\
\hline gS 51.6865 & 51 & 4 \\
\hline gS 51.6872 & 51 & 4 \\
\hline gS 51.6873 & 51 & 4 \\
\hline gS 51.6874 & 51 & 4 \\
\hline gS 51.6875 & 51 & 4 \\
\hline gS 51.6883 & 51 & 5 \\
\hline gS 51.6884 & 51 & 5 \\
\hline gS 51.6885 & 51 & 5 \\
\hline gS 51.6944 & 51 & 6 \\
\hline gS 51.6946 & 51 & 6 \\
\hline gS 51.6948 & 51 & 6 \\
\hline gS 51.6950 & 51 & 6 \\
\hline gS 51.6954 & 51 & 6 \\
\hline gS 51.6956 & 51 & 6 \\
\hline gS 51.6958 & 51 & 6 \\
\hline gS 51.6960 & 51 & 6 \\
\hline gS 51.6962 & 51 & 6 \\
\hline gS 51.6964 & 51 & 6 \\
\hline gS 51.7407 & 51 & 8 \\
\hline gS 51.7408 & 51 & 8 \\
\hline gS 51.7409 & 51 & 8 \\
\hline gS 51.7410 & 51 & 8 \\
\hline gS 51.7411 & 51 & 8 \\
\hline gS 51.7412 & 51 & 8 \\
\hline gS 51.7413 & 51 & 8 \\
\hline gS 51.7414 & 51 & 8 \\
\hline gS 51.7415 & 51 & 8 \\
\hline gS 51.7416 & 51 & 8 \\
\hline gS 51.7427 & 51 & 8 \\
\hline gS 51.7428 & 51 & 8 \\
\hline gS 51.7429 & 51 & 8 \\
\hline gS 51.7430 & 51 & 8 \\
\hline gS 51.7431 & 51 & 8 \\
\hline gS 51.7432 & 51 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline part number & section & page \\
\hline gS 51.7433 & 51 & 8 \\
\hline gS 51.7434 & 51 & 8 \\
\hline gS 51.7435 & 51 & 8 \\
\hline gS 51.7436 & 51 & 8 \\
\hline gS 51.7501 & 51 & 9 \\
\hline gS 51.7502 & 51 & 9 \\
\hline gS 51.7503 & 51 & 9 \\
\hline gS 51.7504 & 51 & 9 \\
\hline gS 51.7706 & 51 & 15 \\
\hline gS 51.7710 & 51 & 15 \\
\hline gS 51.7802 & 51 & 10 \\
\hline gS 51.7804 & 51 & 10 \\
\hline gS 51.7807 & 51 & 10 \\
\hline gS 51.7810 & 51 & 10 \\
\hline gS 51.7812 & 51 & 10 \\
\hline gS 51.7814 & 51 & 10 \\
\hline gS 51.7817 & 51 & 10 \\
\hline gS 51.7820 & 51 & 10 \\
\hline \[
\begin{aligned}
& \text { gS } 51.7908 \\
& 52
\end{aligned}
\] & 51 & 15 \\
\hline gS 52.0100 & 52-53 & 12 \\
\hline gS 52.0101 & 52-53 & 12 \\
\hline gS 52.0102 & 52-53 & 12 \\
\hline gS 52.0103 & 52-53 & 12 \\
\hline gS 52.0105 & 52-53 & 12 \\
\hline gS 52.0106 & 52-53 & 12 \\
\hline gS 52.0107 & 52-53 & 12 \\
\hline gS 52.0108 & 52-53 & 12 \\
\hline gS 52.0110 & 52-53 & 12 \\
\hline gS 52.0111 & 52-53 & 12 \\
\hline gS 52.0112 & 52-53 & 12 \\
\hline gS 52.0113 & 52-53 & 12 \\
\hline gS 52.0160 & 52-53 & 12 \\
\hline gS 52.0300 & 52-53 & 6 \\
\hline gS 52.0301 & 52-53 & 6 \\
\hline gS 52.0302 & 52-53 & 6 \\
\hline gS 52.0310 & 52-53 & 6 \\
\hline gS 52.0311 & 52-53 & 6 \\
\hline gS 52.0312 & 52-53 & 6 \\
\hline gS 52.0313 & 52-53 & 6 \\
\hline gS 52.0400 & 52-53 & 1 \\
\hline gS 52.0460 & 52-53 & 1 \\
\hline gS 52.0500 & 52-53 & 1 \\
\hline gS 52.0700 & 52-53 & 1 \\
\hline gS 52.0750 & 52-53 & 1 \\
\hline gS 52.1008 & 52-53 & 7 \\
\hline gS 52.1010 & 52-53 & 7 \\
\hline gS 52.1020 & 52-53 & 7 \\
\hline gS 52.1040 & 52-53 & 7 \\
\hline gS 52.1060 & 52-53 & 7 \\
\hline gS 52.1080 & 52-53 & 7 \\
\hline gS 52.1220 & 52-53 & 5 \\
\hline gS 52.1222 & 52-53 & 5 \\
\hline gS 52.1318 & 52-53 & 5 \\
\hline gS 52.3680 & 52-53 & 4 \\
\hline gS 52.3690 & 52-53 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline part number & section & page \\
\hline gS 52.3700 & 52-53 & 4 \\
\hline gS 52.3720 & 52-53 & 4 \\
\hline gS 52.3740 & 52-53 & 4 \\
\hline gS 52.3760 & 52-53 & 4 \\
\hline gS 52.3780 & 52-53 & 4 \\
\hline gS 52.3800 & 52-53 & 4 \\
\hline gS 52.3840 & 52-53 & 7 \\
\hline gS 52.3860 & 52-53 & 7 \\
\hline gS 52.3880 & 52-53 & 7 \\
\hline gS 52.3903 & 52-53 & 2 \\
\hline gS 52.3904 & 52-53 & 2 \\
\hline gS 52.3905 & 52-53 & 2 \\
\hline gS 52.3906 & 52-53 & 2 \\
\hline gS 52.3907 & 52-53 & 2 \\
\hline gS 52.3908 & 52-53 & 2 \\
\hline gS 52.3910 & 52-53 & 2 \\
\hline gS 52.3912 & 52-53 & 2 \\
\hline gS 52.3916 & 52-53 & 2 \\
\hline gS 52.3919 & 52-53 & 2 \\
\hline gS 52.3922 & 52-53 & 2 \\
\hline gS 52.3925 & 52-53 & 2 \\
\hline gS 52.4040 & 52-53 & 2 \\
\hline gS 52.4060 & 52-53 & 2 \\
\hline gS 52.4100 & 52-53 & 2 \\
\hline gS 52.4140 & 52-53 & 2 \\
\hline gS 52.4180 & 52-53 & 2 \\
\hline gS 52.4220 & 52-53 & 2 \\
\hline gS 52.4280 & 52-53 & 2 \\
\hline gS 52.4290 & 52-53 & 2 \\
\hline gS 52.4300 & 52-53 & 2 \\
\hline gS 52.4310 & 52-53 & 2 \\
\hline gS 52.4320 & 52-53 & 2 \\
\hline gS 52.4330 & 52-53 & 2 \\
\hline gS 52.4350 & 52-53 & 1 \\
\hline gS 52.4355 & 52-53 & 1 \\
\hline gS 52.4360 & 52-53 & 1 \\
\hline gS 52.4380 & 52-53 & 1 \\
\hline gS 52.4400 & 52-53 & 1 \\
\hline gS 52.4420 & 52-53 & 1 \\
\hline gS 52.4430 & 52-53 & 1 \\
\hline gS 52.4440 & 52-53 & 1 \\
\hline gS 52.4450 & 52-53 & 1 \\
\hline gS 52.4460 & 52-53 & 1 \\
\hline gS 52.4470 & 52-53 & 1 \\
\hline gS 52.4472 & 52-53 & 1 \\
\hline gS 52.4473 & 52-53 & 1 \\
\hline gS 52.4474 & 52-53 & 1 \\
\hline gS 52.4475 & 52-53 & 1 \\
\hline gS 52.4476 & 52-53 & 1 \\
\hline gS 52.4477 & 52-53 & 1 \\
\hline gS 52.4478 & 52-53 & 1 \\
\hline gS 52.4479 & 52-53 & 1 \\
\hline gS 52.4480 & 52-53 & 1 \\
\hline gS 52.4495 & 52-53 & 2 \\
\hline gS 52.4496 & 52-53 & 2 \\
\hline gS 52.4498 & 52-53 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline gS 52.4499 & 52-53 & 2 \\
\hline gS 52.4500 & 52-53 & 2 \\
\hline gS 52.4507 & 52-53 & 2 \\
\hline gS 52.4508 & 52-53 & 2 \\
\hline gS 52.4510 & 52-53 & 2 \\
\hline gS 52.4520 & 52-53 & 2 \\
\hline gS 52.4530 & 52-53 & 2 \\
\hline gS 52.4540 & 52-53 & 2 \\
\hline gS 52.4550 & 52-53 & 2 \\
\hline gS 52.4560 & 52-53 & 2 \\
\hline gS 52.4590 & 52-53 & 8 \\
\hline gS 52.4600 & 52-53 & 8 \\
\hline gS 52.4610 & 52-53 & 8 \\
\hline gS 52.4620 & 52-53 & 8 \\
\hline gS 52.4630 & 52-53 & 8 \\
\hline gS 52.4640 & 52-53 & 8 \\
\hline gS 52.4650 & 52-53 & 8 \\
\hline gS 52.4660 & 52-53 & 8 \\
\hline gS 52.4670 & 52-53 & 8 \\
\hline gS 52.4680 & 52-53 & 8 \\
\hline gS 52.4730 & 52-53 & 8 \\
\hline gS 52.4760 & 52-53 & 8 \\
\hline gS 52.4770 & 52-53 & 8 \\
\hline gS 52.4780 & 52-53 & 8 \\
\hline gS 52.4790 & 52-53 & 8 \\
\hline gS 52.4800 & 52-53 & 8 \\
\hline gS 52.4810 & 52-53 & 8 \\
\hline gS 52.4820 & 52-53 & 8 \\
\hline gS 52.4830 & 52-53 & 8 \\
\hline gS 52.4840 & 52-53 & 8 \\
\hline gS 52.4870 & 52-53 & 8 \\
\hline gS 52.4873 & 52-53 & 8 \\
\hline gS 52.4902 & 52-53 & 5 \\
\hline gS 52.4904 & 52-53 & 5 \\
\hline gS 52.4906 & 52-53 & 5 \\
\hline gS 52.4908 & 52-53 & 5 \\
\hline gS 52.4910 & 52-53 & 5 \\
\hline gS 52.4912 & 52-53 & 5 \\
\hline gS 52.5004 & 52-53 & 3 \\
\hline gS 52.5006 & 52-53 & 3 \\
\hline gS 52.5008 & 52-53 & 3 \\
\hline gS 52.5010 & 52-53 & 3 \\
\hline gS 52.5013 & 52-53 & 3 \\
\hline gS 52.5015 & 52-53 & 3 \\
\hline gS 52.5016 & 52-53 & 3 \\
\hline gS 52.5018 & 52-53 & 3 \\
\hline gS 52.5020 & 52-53 & 3 \\
\hline gS 52.5025 & 52-53 & 3 \\
\hline gS 52.5030 & 52-53 & 3 \\
\hline gS 52.5038 & 52-53 & 3 \\
\hline gS 52.5044 & 52-53 & 3 \\
\hline gS 52.5050 & 52-53 & 3 \\
\hline gS 52.5480 & 52-53 & 7 \\
\hline gS 52.5490 & 52-53 & 7 \\
\hline gS 52.5500 & 52-53 & 7 \\
\hline gS 52.5510 & 52-53 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline gS 54.1060 & 54 & 2 \\
\hline gS 54.1070 & 54 & 2 \\
\hline gS 54.1085 & 54 & 2 \\
\hline gS 54.1086 & 54 & 2 \\
\hline gS 54.1087 & 54 & 2 \\
\hline gS 54.1090 & 54 & 2 \\
\hline gS 54.1092 & 54 & 2 \\
\hline gS 54.1094 & 54 & 2 \\
\hline gS 54.1100 & 54 & 5 \\
\hline gS 54.1120 & 54 & 5 \\
\hline gS 54.1140 & 54 & 5 \\
\hline gS 54.1160 & 54 & 5 \\
\hline gS 54.1400 & 54 & 4 \\
\hline gS 54.1410 & 54 & 4 \\
\hline gS 54.1420 & 54 & 4 \\
\hline gS 54.1430 & 54 & 4 \\
\hline gS 54.1440 & 54 & 4 \\
\hline gS 54.1450 & 54 & 4 \\
\hline gS 54.1590 & 54 & 5 \\
\hline gS 54.1600 & 54 & 5 \\
\hline gS 54.1610 & 54 & 5 \\
\hline gS 54.1620 & 54 & 5 \\
\hline gS 54.1630 & 54 & 5 \\
\hline gS 54.1640 & 54 & 5 \\
\hline gS 54.1650 & 54 & 5 \\
\hline gS 54.1660 & 54 & 5 \\
\hline gS 54.1670 & 54 & 5 \\
\hline gS 54.1680 & 54 & 5 \\
\hline gS 54.1730 & 54 & 5 \\
\hline gS 54.1740 & 54 & 5 \\
\hline gS 54.1750 & 54 & 5 \\
\hline gS 54.1760 & 54 & 5 \\
\hline gS 54.1770 & 54 & 5 \\
\hline gS 54.1780 & 54 & 5 \\
\hline gS 54.1790 & 54 & 5 \\
\hline gS 54.1800 & 54 & 5 \\
\hline gS 54.1810 & 54 & 5 \\
\hline gS 54.1820 & 54 & 5 \\
\hline gS 54.1906 & 54 & 6 \\
\hline gS 54.3460 & 54 & 4 \\
\hline gS 54.3480 & 54 & 4 \\
\hline gS 54.3500 & 54 & 4 \\
\hline gS 54.3520 & 54 & 4 \\
\hline gS 54.3540 & 54 & 4 \\
\hline gS 54.3560 & 54 & 4 \\
\hline gS 54.3580 & 54 & 4 \\
\hline gS 54.3600 & 54 & 3 \\
\hline gS 54.3620 & 54 & 3 \\
\hline gS 54.3640 & 54 & 3 \\
\hline gS 54.3660 & 54 & 3 \\
\hline gS 54.3680 & 54 & 3 \\
\hline gS 54.3890 & 54 & 3 \\
\hline gS 54.3900 & 54 & 3 \\
\hline gS 54.3910 & 54 & 3 \\
\hline gS 54.6050 & 54 & 2 \\
\hline gS 54.6060 & 54 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 54.6070 & 54 & 2 & gS 56.5100 & 56 & 4 \\
\hline gS 54.6080 & 54 & 2 & gS 56.5110 & 56 & 4 \\
\hline gS 54.6090 & 54 & 2 & gS 56.5120 & 56 & 4 \\
\hline gS 54.6240 & 54 & 1 & gS 56.5660 & 56 & 3 \\
\hline gS 54.6280 & 54 & 1 & gS 56.5670 & 56 & 3 \\
\hline gS 54.6290 & 54 & 1 & gS 56.5680 & 56 & 3 \\
\hline gS 54.6570 & 54 & 1 & gS 56.5760 & 56 & 3 \\
\hline gS 54.6600 & 54 & 1 & gS 56.5770 & 56 & 3 \\
\hline gS 54.6620 & 54 & 1 & gS 56.5780 & 56 & 3 \\
\hline gS 54.6680 & 54 & 1 & gS 56.5790 & 56 & 3 \\
\hline gS 54.7500 & 54 & 1 & gS 56.5870 & 56 & 3 \\
\hline 56 & & & gS 56.5880 & 56 & 3 \\
\hline gS 56.0003 & 56 & 1 & gS 56.5890 & 56 & 3 \\
\hline gS 56.0004 & 56 & 1 & gS 56.5900 & 56 & 3 \\
\hline gS 56.0005 & 56 & 1 & gS 56.5910 & 56 & 3 \\
\hline gS 56.0006 & 56 & 1 & gS 56.5930 & 56 & 3 \\
\hline gS 56.0007 & 56 & 1 & gS 56.5950 & 56 & 3 \\
\hline gS 56.0104 & 56 & 2 & gS 56.5970 & 56 & 5 \\
\hline gS 56.0106 & 56 & 2 & gS 56.5972 & 56 & 5 \\
\hline gS 56.0108 & 56 & 2 & gS 56.5980 & 56 & 5 \\
\hline gS 56.0110 & 56 & 2 & gS 56.5982 & 56 & 5 \\
\hline gS 56.0112 & 56 & 2 & gS 56.6010 & 56 & 6 \\
\hline gS 56.0190 & 56 & 3 & gS 56.6012 & 56 & 6 \\
\hline gS 56.1009 & 56 & 4 & gS 56.6014 & 56 & 6 \\
\hline gS 56.1020 & 56 & 3 & gS 56.6016 & 56 & 6 \\
\hline gS 56.1280 & 56 & 4 & gS 56.6018 & 56 & 6 \\
\hline gS 56.1300 & 56 & 5 & gS 56.6020 & 56 & 6 \\
\hline gS 56.1320 & 56 & 5 & 59 & & \\
\hline gS 56.1340 & 56 & 5 & gS 59.7010 & 59 & 1 \\
\hline gS 56.1360 & 56 & 5 & gS 59.7014 & 59 & 1 \\
\hline gS 56.1500 & 56 & 2 & gS 59.7018 & 59 & 1 \\
\hline gS 56.1510 & 56 & 2 & gS 59.7120 & 59 & 1 \\
\hline gS 56.1520 & 56 & 2 & gS 59.7560 & 59 & 2 \\
\hline gS 56.1530 & 56 & 2 & gS 59.7570 & 59 & 5 \\
\hline gS 56.1540 & 56 & 2 & gS 59.7571 & 59 & 5 \\
\hline gS 56.1550 & 56 & 2 & gS 59.7580 & 59 & 9 \\
\hline gS 56.3920 & 56 & 1 & gS 59.7590 & 59 & 2 \\
\hline gS 56.3930 & 56 & 1 & gS 59.7595 & 59 & 2 \\
\hline gS 56.3940 & 56 & 1 & gS 59.7600 & 59 & 2 \\
\hline gS 56.4870 & 56 & 4 & gS 59.7605 & 59 & 5 \\
\hline gS 56.4880 & 56 & 4 & gS 59.7610 & 59 & 5 \\
\hline gS 56.4890 & 56 & 4 & gS 59.7615 & 59 & 3 \\
\hline gS 56.4900 & 56 & 4 & gS 59.7620 & 59 & 3 \\
\hline gS 56.4910 & 56 & 4 & gS 59.7621 & 59 & 3 \\
\hline gS 56.4920 & 56 & 4 & gS 59.7624 & 59 & 7 \\
\hline gS 56.4930 & 56 & 4 & gS 59.7626 & 59 & 10 \\
\hline gS 56.4940 & 56 & 4 & gS 59.7627 & 59 & 11 \\
\hline gS 56.4950 & 56 & 4 & gS 59.7628 & 59 & 10 \\
\hline gS 56.5010 & 56 & 4 & gS 59.7629 & 59 & 11 \\
\hline gS 56.5020 & 56 & 4 & gS 59.7641 & 59 & 6 \\
\hline gS 56.5030 & 56 & 4 & gS 59.7642 & 59 & 8 \\
\hline gS 56.5040 & 56 & 4 & gS 59.7644 & 59 & 9 \\
\hline gS 56.5050 & 56 & 4 & gS 59.7650 & 59 & 9 \\
\hline gS 56.5070 & 56 & 4 & gS 59.7660 & 59 & 11 \\
\hline gS 56.5080 & 56 & 4 & gS 59.7670 & 59 & 12 \\
\hline gS 56.5090 & 56 & 4 & gS 59.7710 & 59 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 59.7818 & 59 & 4 & gS 61.6340 & 61-62 & 1 \\
\hline gS 59.7821 & 59 & 6 & gS 61.6380 & 61-62 & 1 \\
\hline gS 59.7840 & 59 & 5 & gS 61.6420 & 61-62 & 2 \\
\hline gS 59.7845 & 59 & 8 & gS 61.6430 & 61-62 & 3 \\
\hline gS 59.7860 & 59 & 3 & gS 61.6440 & 61-62 & 3 \\
\hline gS 59.7870 & 59 & 3 & gS 61.6450 & 61-62 & 3 \\
\hline gS 59.7873 & 59 & 6 & gS 61.6455 & 61-62 & 2 \\
\hline gS 59.7876 & 59 & 4 & gS 61.6475 & 61-62 & 3 \\
\hline gS 59.7878 & 59 & 8 & gS 61.6477 & 61-62 & 6 \\
\hline gS 59.7879 & 59 & 8 & gS 61.6501 & 61-62 & 4 \\
\hline gS 59.7880 & 59 & 10 & gS 61.6502 & 61-62 & 4 \\
\hline gS 59.7885 & 59 & 9 & gS 61.6503 & 61-62 & 5 \\
\hline gS 59.7890 & 59 & 12 & gS 61.6504 & 61-62 & 5 \\
\hline gS 59.7910 & 59 & 10 & gS 61.6505 & 61-62 & 5 \\
\hline gS 59.8600 & 59 & 4 & gS 61.6511 & 61-62 & 4 \\
\hline gS 59.8660 & 59 & 6 & gS 61.6512 & 61-62 & 4 \\
\hline gS 59.8670 & 59 & 7 & gS 61.6725 & 61-62 & 7 \\
\hline gS 59.8710 & 59 & 7 & gS 61.6726 & 61-62 & 7 \\
\hline gS 59.8711 & 59 & 7 & gS 61.6841 & 61-62 & 8 \\
\hline gS 59.8712 & 59 & 7 & gS 61.6842 & 61-62 & 8 \\
\hline gS 59.8800 & 59 & 4 & gS 61.6843 & 61-62 & 8 \\
\hline gS 59.8810 & 59 & 8 & gS 61.6844 & 61-62 & 8 \\
\hline gS 59.8900 & 59 & 11 & gS 61.6845 & 61-62 & 8 \\
\hline 60 & & & gS 61.6846 & 61-62 & 8 \\
\hline gS 60.0600 & 60 & 1 & gS 61.6847 & 61-62 & 8 \\
\hline gS 60.0800 & 60 & 1 & gS 61.6848 & 61-62 & 8 \\
\hline gS 60.0801 & 60 & 1 & gS 61.6855 & 61-62 & 9 \\
\hline gS 60.1801 & 60 & 2 & 62 & & \\
\hline gS 60.1802 & 60 & 2 & gS 62.1500 & 61-62 & 7 \\
\hline gS 60.1803 & 60 & 2 & gS 62.1520 & 61-62 & 7 \\
\hline gS 60.1804 & 60 & 2 & gS 62.1660 & 61-62 & 7 \\
\hline gS 60.1805 & 60 & 2 & gS 62.1665 & 61-62 & 6 \\
\hline gS 60.1806 & 60 & 2 & gS 62.1670 & 61-62 & 5 \\
\hline gS 60.1807 & 60 & 2 & gS 62.1710 & 61-62 & 6 \\
\hline gS 60.1808 & 60 & 2 & gS 62.1720 & 61-62 & 6 \\
\hline gS 60.1809 & 60 & 2 & gS 62.1730 & 61-62 & 6 \\
\hline gS 60.2764 & 60 & 3 & gS 62.6398 & 61-62 & 2 \\
\hline gS 60.7503 & 60 & 1 & gS 62.6400 & 61-62 & 2 \\
\hline gS 60.7505 & 60 & 1 & gS 62.7500 & 61-62 & 11 \\
\hline gS 60.7508 & 60 & 1 & gS 62.7520 & 61-62 & 11 \\
\hline gS 60.8500 & 60 & 3 & gS 62.7540 & 61-62 & 11 \\
\hline gS 60.8510 & 60 & 3 & gS 62.7548 & 61-62 & 10 \\
\hline gS 60.8520 & 60 & 3 & gS 62.7550 & 61-62 & 10 \\
\hline gS 60.8530 & 60 & 3 & gS 62.7680 & 61-62 & 10 \\
\hline gS 60.8540 & 60 & 3 & gS 62.7720 & 61-62 & 10 \\
\hline gS 60.8743 & 60 & 4 & gS 62.8050 & 61-62 & 11 \\
\hline gS 60.9930 & 60 & 1 & gS 62.9910 & 61-62 & 9 \\
\hline gS 60.9940 & 60 & 1 & 63 & & \\
\hline gS 60.9950 & 60 & 1 & gS 63.4660 & 63 & 6 \\
\hline gS 60.9960 & 60 & 1 & gS 63.4661 & 63 & 6 \\
\hline gS 60.9970 & 60 & 1 & gS 63.4700 & 63 & 6 \\
\hline gS 60.9980 & 60 & 1 & gS 63.4740 & 63 & 5 \\
\hline gS 60.9990 & 60 & 1 & gS 63.4801 & 63 & 1 \\
\hline 61 & & & gS 63.4811 & 63 & 1 \\
\hline gS 61.1700 & 61-62 & 1 & gS 63.4812 & 63 & 1 \\
\hline gS 61.6338 & 61-62 & 1 & gS 63.4821 & 63 & 3 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
part number & section & page \\
\hline gS 63.4831 & 63 & 4 \\
gS 63.4832 & 63 & 4 \\
gS 63.4980 & 63 & 2 \\
gS 63.4981 & 63 & 2 \\
gS 63.4982 & 63 & 2 \\
gS 63.4983 & 63 & 2 \\
gS 63.5100 & 63 & 2 \\
gS 63.5101 & 63 & 2 \\
gS 63.5102 & 63 & 2 \\
gS 63.5103 & 63 & 2 \\
gS 63.6380 & 63 & 4 \\
gS 63.6420 & 63 & 4 \\
gS 63.6460 & 63 & 5 \\
gS 63.6560 & 63 & 3 \\
gS 63.6570 & 63 & 3 \\
gS 63.6580 & 63 & 3 \\
64 & & \\
gS 64.4890 & 64 & 1 \\
gS 64.5000 & 64 & 1 \\
gS 64.5100 & 64 & 1 \\
gS 64.8024 & 64 & 1 \\
65 65.3380 & 65 & 1 \\
gS 65.3390 & 65 & 1 \\
gS 65.353 \\
gS 65.3392 & 65 & 1 \\
gS 65.3394 & 65 & 1 \\
gS 65.3610 & 65 & 2 \\
gS 65.3620 & 65 & 2 \\
gS 65.3630 & 65 & 2 \\
gS 65.7010 & 65 & 2 \\
gS 65.7120 & 65 & 1 \\
gS 65.7130 & 65 & 1 \\
gS 65.7135 & 65 & 1 \\
gS 65.7140 & 65 & 1 \\
gS 65.7150 & 65 & 1 \\
gS 65.7170 & 65 & 1 \\
gS 65.7175 & 65 & 1 \\
gS 65.7213 & 65 & 2 \\
gS 65.7431 & 65 & 3 \\
gS 65.7440 & 65 & 3 \\
gS 65.7450 & 65 & 3 \\
gS 65.7452 & 65 & 3 \\
gS 65.7454 & 65 & 3 \\
gS 65.8100 & 65 & 3 \\
gS 65.8120 & 65 & 2 \\
gS 65.8125 & 65 & 2 \\
66 & & \\
gS 66.3404 & 66 & 5 \\
gS 66.3414 & 66 & 5 \\
gS 66.3520 & 66 & 1 \\
gS 66.3528 & 66 & 1 \\
gS 66.3530 & 66 & 1 \\
gS 66.3531 & 66 & 6 \\
gS 66.3532 & 66 & 6 \\
gS 66.3540 & 66 & 3 \\
gS 66.3560 & 66 & 3 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
part number & section & page \\
\hline gS 66.3580 & 66 & 3 \\
gS 66.3600 & 66 & 3 \\
gS 66.3602 & 66 & 1 \\
gS 66.3604 & 66 & 1 \\
gS 66.3606 & 66 & 1 \\
gS 66.3610 & 66 & 2 \\
gS 66.3616 & 66 & 2 \\
gS 66.3617 & 66 & 2 \\
gS 66.3619 & 66 & 2 \\
gS 66.3620 & 66 & 2 \\
gS 66.3621 & 66 & 2 \\
gS 66.3630 & 66 & 2 \\
gS 66.3660 & 66 & 3 \\
gS 66.3670 & 66 & 3 \\
gS 66.3680 & 66 & 3 \\
gS 66.3691 & 66 & 4 \\
gS 66.3692 & 66 & 4 \\
gS 66.3693 & 66 & 4 \\
gS 66.3703 & 66 & 5 \\
gS 66.3704 & 66 & 5 \\
gS 66.3760 & 66 & 5 \\
gS 66.3765 & 66 & 4 \\
gS 66.3771 & 66 & 4 \\
gS 66.3772 & 66 & 4 \\
gS 66.3773 & 66 & 4 \\
gS 66.3780 & 66 & 7 \\
gS 66.3840 & 66 & 7 \\
gS 66.3850 & 66 & 6 \\
gS 66.3880 & 66 & 7 \\
gS 66.4020 & 66 & 6 \\
gS 66.4028 & 66 & 6 \\
gS 66.4040 & 66 & 7 \\
gS 66.4060 & 66 & 6 \\
gS 66.4068 & 66 & 6 \\
gS 66.4790 & 66 & 14 \\
gS 66.4800 & 66 & 14 \\
gS 66.4820 & 66 & 14 \\
gS 66.4840 & 66 & 14 \\
gS 66.4860 & 66 & 14 \\
gS 66.4870 & 66 & 14 \\
gS 66.4880 & 66 & 14 \\
gS 66.4890 & 66 & 14 \\
gS 66.4960 & 66 & 13 \\
gS 66.5580 & 66 & 15 \\
gS 66.5600 & 66 & 15 \\
gS 66.5611 & 66 & 16 \\
gS 66.5612 & 66 & 16 \\
gS 66.5620 & 66 & 16 \\
gS 66.5640 & 66 & 16 \\
gS 66.5651 & 66 & 16 \\
gS 66.5652 & 66 & 16 \\
gS 66.5715 & 66 & 13 \\
gS 66.5720 & 66 & 13 \\
gS 66.5740 & 66 & 13 \\
gS 66.5760 & 66 & 13 \\
gS 66.5780 & 66 & 13 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & pag \\
\hline gS 66.5800 & 66 & 12 & gS 67.0234 & 67-68 & 4 \\
\hline gS 66.5820 & 66 & 12 & gS 67.0242 & 67-68 & 4 \\
\hline gS 66.5840 & 66 & 12 & gS 67.0243 & 67-68 & 4 \\
\hline gS 66.5859 & 66 & 11 & gS 67.0244 & 67-68 & 4 \\
\hline gS 66.5860 & 66 & 11 & gS 67.8300 & 67-68 & 3 \\
\hline gS 66.5870 & 66 & 11 & gS 67.8320 & 67-68 & 3 \\
\hline gS 66.5880 & 66 & 11 & gS 67.8340 & 67-68 & 3 \\
\hline gS 66.5890 & 66 & 11 & gS 67.8800 & 67-68 & 3 \\
\hline gS 66.5900 & 66 & 11 & gS 67.8820 & 67-68 & 3 \\
\hline gS 66.5940 & 66 & 12 & gS 67.8840 & 67-68 & 3 \\
\hline gS 66.5950 & 66 & 12 & gS 67.9400 & 67-68 & 4 \\
\hline gS 66.5970 & 66 & 12 & gS 67.9420 & 67-68 & 4 \\
\hline gS 66.5980 & 66 & 12 & gS 67.9440 & 67-68 & 4 \\
\hline gS 66.5990 & 66 & 12 & 68 & & \\
\hline gS 66.5991 & 66 & 12 & gS 68.0202 & 67-68 & 9 \\
\hline gS 66.6200 & 66 & 8 & gS 68.0203 & 67-68 & 9 \\
\hline gS 66.6220 & 66 & 9 & gS 68.0204 & 67-68 & 9 \\
\hline gS 66.6230 & 66 & 9 & gS 68.0205 & 67-68 & 9 \\
\hline gS 66.6250 & 66 & 9 & gS 68.0206 & 67-68 & 9 \\
\hline gS 66.6252 & 66 & 9 & gS 68.0212 & 67-68 & 9 \\
\hline gS 66.6253 & 66 & 9 & gS 68.0213 & 67-68 & 9 \\
\hline gS 66.6255 & 66 & 9 & gS 68.0214 & 67-68 & 9 \\
\hline gS 66.6256 & 66 & 9 & gS 68.0215 & 67-68 & 9 \\
\hline gS 66.6257 & 66 & 9 & gS 68.0216 & 67-68 & 9 \\
\hline gS 66.6258 & 66 & 9 & gS 68.0222 & 67-68 & 9 \\
\hline gS 66.6260 & 66 & 10 & gS 68.0223 & 67-68 & 9 \\
\hline gS 66.6265 & 66 & 10 & gS 68.0224 & 67-68 & 9 \\
\hline gS 66.6267 & 66 & 10 & gS 68.0225 & 67-68 & 9 \\
\hline gS 66.6270 & 66 & 10 & gS 68.0226 & 67-68 & 9 \\
\hline gS 66.6275 & 66 & 10 & gS 68.0233 & 67-68 & 9 \\
\hline gS 66.6277 & 66 & 10 & gS 68.0234 & 67-68 & 9 \\
\hline gS 66.6280 & 66 & 10 & gS 68.0242 & 67-68 & 9 \\
\hline gS 66.6310 & 66 & 10 & gS 68.0243 & 67-68 & 9 \\
\hline gS 66.6335 & 66 & 10 & gS 68.0244 & 67-68 & 9 \\
\hline gS 66.6336 & 66 & 10 & gS 68.0245 & 67-68 & 9 \\
\hline gS 66.6337 & 66 & 10 & gS 68.0246 & 67-68 & 9 \\
\hline gS 66.6339 & 66 & 11 & gS 68.7702 & 67-68 & 9 \\
\hline gS 66.6340 & 66 & 11 & gS 68.7703 & 67-68 & 9 \\
\hline gS 66.6344 & 66 & 11 & gS 68.7704 & 67-68 & 9 \\
\hline gS 66.6348 & 66 & 13 & gS 68.7705 & 67-68 & 9 \\
\hline gS 66.6357 & 66 & 15 & gS 68.7732 & 67-68 & 9 \\
\hline gS 66.6358 & 66 & 16 & gS 68.7733 & 67-68 & 9 \\
\hline gS 66.6359 & 66 & 16 & gS 68.7734 & 67-68 & 9 \\
\hline gS 66.6573 & 66 & 9 & gS 68.7735 & 67-68 & 9 \\
\hline gS 66.6580 & 66 & 8 & gS 68.7762 & 67-68 & 9 \\
\hline gS 66.6600 & 66 & 8 & gS 68.7763 & 67-68 & 9 \\
\hline gS 66.6620 & 66 & 8 & gS 68.7764 & 67-68 & 9 \\
\hline gS 66.6705 & 66 & 15 & gS 68.7765 & 67-68 & 9 \\
\hline gS 66.6707 & 66 & 15 & gS 68.7892 & 67-68 & 9 \\
\hline gS 66.6710 & 66 & 15 & gS 68.7900 & 67-68 & 9 \\
\hline 67 & & & gS 68.7904 & 67-68 & 9 \\
\hline gS 67.0222 & 67-68 & 4 & gS 68.7905 & 67-68 & 9 \\
\hline gS 67.0223 & 67-68 & 4 & gS 68.7929 & 67-68 & 9 \\
\hline gS 67.0224 & 67-68 & 4 & gS 68.7930 & 67-68 & 9 \\
\hline gS 67.0232 & 67-68 & 4 & gS 68.7934 & 67-68 & 9 \\
\hline gS 67.0233 & 67-68 & 4 & gS 68.7935 & 67-68 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 68.7959 & 67-68 & 9 & gS 68.8924 & 67-68 & 7 \\
\hline gS 68.7960 & 67-68 & 9 & gS 68.8926 & 67-68 & 7 \\
\hline gS 68.7964 & 67-68 & 9 & gS 68.8932 & 67-68 & 7 \\
\hline gS 68.7965 & 67-68 & 9 & gS 68.8934 & 67-68 & 7 \\
\hline gS 68.8000 & 67-68 & 9 & gS 68.8936 & 67-68 & 7 \\
\hline gS 68.8020 & 67-68 & 9 & gS 68.9000 & 67-68 & 8 \\
\hline gS 68.8029 & 67-68 & 9 & gS 68.9020 & 67-68 & 8 \\
\hline gS 68.8030 & 67-68 & 9 & gS 68.9040 & 67-68 & 8 \\
\hline gS 68.8031 & 67-68 & 9 & gS 68.9202 & 67-68 & 8 \\
\hline gS 68.8032 & 67-68 & 9 & gS 68.9204 & 67-68 & 8 \\
\hline gS 68.8034 & 67-68 & 9 & gS 68.9206 & 67-68 & 8 \\
\hline gS 68.8035 & 67-68 & 9 & gS 68.9400 & 67-68 & 8 \\
\hline gS 68.8036 & 67-68 & 9 & gS 68.9420 & 67-68 & \\
\hline gS 68.8037 & 67-68 & 9 & gS 68.9440 & 67-68 & 8 \\
\hline gS 68.8040 & 67-68 & 9 & gS 68.9502 & 67-68 & 8 \\
\hline gS 68.8050 & 67-68 & 9 & gS 68.9504 & 67-68 & 8 \\
\hline gS 68.8052 & 67-68 & 8 & gS 68.9506 & 67-68 & 8 \\
\hline gS 68.8054 & 67-68 & 8 & gS 68.9512 & 67-68 & 8 \\
\hline gS 68.8056 & 67-68 & 8 & gS 68.9514 & 67-68 & 8 \\
\hline gS 68.8100 & 67-68 & 7 & gS 68.9516 & 67-68 & 8 \\
\hline gS 68.8120 & 67-68 & 7 & gS 68.9522 & 67-68 & 8 \\
\hline gS 68.8140 & 67-68 & 7 & gS 68.9524 & 67-68 & 8 \\
\hline gS 68.8210 & 67-68 & 7 & gS 68.9526 & 67-68 & 8 \\
\hline gS 68.8230 & 67-68 & 7 & gS 68.9532 & 67-68 & 8 \\
\hline gS 68.8240 & 67-68 & 7 & gS 68.9534 & 67-68 & 8 \\
\hline gS 68.8300 & 67-68 & 7 & gS 68.9536 & 67-68 & 8 \\
\hline gS 68.8320 & 67-68 & 7 & gS 68.9543 & 67-68 & 5 \\
\hline gS 68.8340 & 67-68 & 7 & gS 68.9545 & 67-68 & 5 \\
\hline gS 68.8402 & 67-68 & 7 & gS 68.9553 & 67-68 & 6 \\
\hline gS 68.8404 & 67-68 & 7 & gS 68.9554 & 67-68 & 6 \\
\hline gS 68.8406 & 67-68 & 7 & gS 68.9560 & 67-68 & 10 \\
\hline gS 68.8525 & 67-68 & 7 & gS 68.9571 & 67-68 & 5 \\
\hline gS 68.8527 & 67-68 & 7 & gS 68.9575 & 67-68 & 6 \\
\hline gS 68.8529 & 67-68 & 7 & gS 68.9576 & 67-68 & 6 \\
\hline gS 68.8535 & 67-68 & 7 & gS 68.9577 & 67-68 & 6 \\
\hline gS 68.8537 & 67-68 & 7 & gS 68.9580 & 67-68 & 10 \\
\hline gS 68.8539 & 67-68 & 7 & gS 68.9600 & 67-68 & 10 \\
\hline gS 68.8602 & 67-68 & 7 & gS 68.9620 & 67-68 & 10 \\
\hline gS 68.8604 & 67-68 & 7 & gS 68.9640 & 67-68 & 10 \\
\hline gS 68.8606 & 67-68 & 7 & gS 68.9660 & 67-68 & 10 \\
\hline gS 68.8610 & 67-68 & 7 & gS 68.9680 & 67-68 & 10 \\
\hline gS 68.8620 & 67-68 & 7 & gS 68.9700 & 67-68 & 10 \\
\hline gS 68.8640 & 67-68 & 7 & gS 68.9720 & 67-68 & 10 \\
\hline gS 68.8702 & 67-68 & 7 & gS 68.9725 & 67-68 & 10 \\
\hline gS 68.8704 & 67-68 & 7 & gS 68.9726 & 67-68 & 10 \\
\hline gS 68.8706 & 67-68 & 7 & gS 68.9727 & 67-68 & 10 \\
\hline gS 68.8800 & 67-68 & 7 & gS 68.9728 & 67-68 & 10 \\
\hline gS 68.8820 & 67-68 & 7 & gS 68.9730 & 67-68 & 10 \\
\hline gS 68.8840 & 67-68 & 7 & gS 68.9750 & 67-68 & 10 \\
\hline gS 68.8900 & 67-68 & 7 & gS 68.9780 & 67-68 & 10 \\
\hline gS 68.8901 & 67-68 & 7 & gS 68.9805 & 67-68 & 12 \\
\hline gS 68.8903 & 67-68 & 7 & gS 68.9815 & 67-68 & 12 \\
\hline gS 68.8912 & 67-68 & 7 & gS 68.9824 & 67-68 & 11 \\
\hline gS 68.8914 & 67-68 & 7 & gS 68.9826 & 67-68 & 11 \\
\hline gS 68.8916 & 67-68 & 7 & gS 68.9843 & 67-68 & 11 \\
\hline gS 68.8922 & 67-68 & 7 & gS 68.9844 & 67-68 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 68.9848 & 67-68 & 11 & gS 70.5726 & 70 & 6 \\
\hline 69 & & & gS 70.5801 & 70 & 6 \\
\hline gS 69.3081 & 69 & 5 & gS 70.5802 & 70 & 6 \\
\hline gS 69.3082 & 69 & 5 & gS 70.5803 & 70 & 6 \\
\hline gS 69.3083 & 69 & 5 & gS 70.5804 & 70 & 6 \\
\hline gS 69.3084 & 69 & 5 & gS 70.5805 & 70 & 6 \\
\hline gS 69.3085 & 69 & 5 & gS 70.5806 & 70 & 6 \\
\hline gS 69.4081 & 69 & 2 & gS 70.5811 & 70 & 6 \\
\hline gS 69.4082 & 69 & 2 & gS 70.5812 & 70 & 6 \\
\hline gS 69.4083 & 69 & 2 & gS 70.5813 & 70 & 6 \\
\hline gS 69.4084 & 69 & 2 & gS 70.5814 & 70 & 6 \\
\hline gS 69.4085 & 69 & 2 & gS 70.5815 & 70 & 6 \\
\hline gS 69.4086 & 69 & 2 & gS 70.5816 & 70 & 6 \\
\hline gS 69.8081 & 69 & 3 & gS 70.5821 & 70 & 6 \\
\hline gS 69.8082 & 69 & 3 & gS 70.5822 & 70 & 6 \\
\hline gS 69.8083 & 69 & 3 & gS 70.5823 & 70 & 6 \\
\hline gS 69.8084 & 69 & 3 & gS 70.5824 & 70 & 6 \\
\hline gS 69.8085 & 69 & 3 & gS 70.5825 & 70 & 6 \\
\hline gS 69.8086 & 69 & 3 & gS 70.5826 & 70 & 6 \\
\hline 70 & & & gS 70.6302 & 70 & 8 \\
\hline gS 70.1290 & 70 & 5 & gS 70.6304 & 70 & 8 \\
\hline gS 70.1300 & 70 & 5 & gS 70.6306 & 70 & 8 \\
\hline gS 70.1330 & 70 & 5 & gS 70.7802 & 70 & 7 \\
\hline gS 70.1340 & 70 & 5 & gS 70.7803 & 70 & 7 \\
\hline gS 70.1350 & 70 & 5 & gS 70.7804 & 70 & 7 \\
\hline gS 70.1360 & 70 & 5 & gS 70.7805 & 70 & 7 \\
\hline gS 70.1530 & 70 & 5 & gS 70.7806 & 70 & 7 \\
\hline gS 70.1630 & 70 & 5 & gS 70.7812 & 70 & 7 \\
\hline gS 70.2001 & 70 & 5 & gS 70.7813 & 70 & 7 \\
\hline gS 70.2002 & 70 & 5 & gS 70.7814 & 70 & 7 \\
\hline gS 70.2003 & 70 & 5 & gS 70.7815 & 70 & 7 \\
\hline gS 70.2004 & 70 & 5 & gS 70.7816 & 70 & 7 \\
\hline gS 70.2005 & 70 & 5 & gS 70.7822 & 70 & 7 \\
\hline gS 70.2006 & 70 & 5 & gS 70.7823 & 70 & 7 \\
\hline gS 70.5213 & 70 & 4 & gS 70.7824 & 70 & 7 \\
\hline gS 70.5215 & 70 & 4 & gS 70.7825 & 70 & 7 \\
\hline gS 70.5217 & 70 & 4 & gS 70.7826 & 70 & 7 \\
\hline gS 70.5219 & 70 & 4 & gS 70.8122 & 70 & 7 \\
\hline gS 70.5221 & 70 & 4 & gS 70.8123 & 70 & 7 \\
\hline gS 70.5701 & 70 & 6 & gS 70.8124 & 70 & 7 \\
\hline gS 70.5702 & 70 & 6 & gS 70.8125 & 70 & 7 \\
\hline gS 70.5703 & 70 & 6 & gS 70.8126 & 70 & 7 \\
\hline gS 70.5704 & 70 & 6 & gS 70.9121 & 70 & 6 \\
\hline gS 70.5705 & 70 & 6 & gS 70.9122 & 70 & 6 \\
\hline gS 70.5706 & 70 & 6 & gS 70.9123 & 70 & 6 \\
\hline gS 70.5711 & 70 & 6 & gS 70.9124 & 70 & 6 \\
\hline gS 70.5712 & 70 & 6 & gS 70.9125 & 70 & 6 \\
\hline gS 70.5713 & 70 & 6 & gS 70.9126 & 70 & 6 \\
\hline gS 70.5714 & 70 & 6 & gS 70.9230 & 70 & 4 \\
\hline gS 70.5715 & 70 & 6 & gS 70.9240 & 70 & 4 \\
\hline gS 70.5716 & 70 & 6 & 71 & & \\
\hline gS 70.5721 & 70 & 6 & gS 71.5701 & 71 & 1 \\
\hline gS 70.5722 & 70 & 6 & gS 71.5702 & 71 & 1 \\
\hline gS 70.5723 & 70 & 6 & gS 71.5703 & 71 & 1 \\
\hline gS 70.5724 & 70 & 6 & gS 71.5704 & 71 & 1 \\
\hline gS 70.5725 & 70 & 6 & gS 71.5705 & 71 & 1 \\
\hline
\end{tabular}

\section*{120/16 - numeric index}
\begin{tabular}{|c|c|c|}
\hline art number & section & page \\
\hline gS 71.5706 & 71 & 1 \\
\hline gS 71.5711 & 71 & 1 \\
\hline gS 71.5712 & 71 & 1 \\
\hline gS 71.5713 & 71 & 1 \\
\hline gS 71.5714 & 71 & 1 \\
\hline gS 71.5715 & 71 & 1 \\
\hline gS 71.5716 & 71 & 1 \\
\hline gS 71.5721 & 71 & 1 \\
\hline gS 71.5722 & 71 & 1 \\
\hline gS 71.5723 & 71 & 1 \\
\hline gS 71.5724 & 71 & 1 \\
\hline gS 71.5725 & 71 & 1 \\
\hline gS 71.5726 & 71 & 1 \\
\hline gS 71.5801 & 71 & 1 \\
\hline gS 71.5802 & 71 & 1 \\
\hline gS 71.5803 & 71 & 1 \\
\hline gS 71.5804 & 71 & 1 \\
\hline gS 71.5805 & 71 & 1 \\
\hline gS 71.5806 & 71 & 1 \\
\hline gS 71.5811 & 71 & 1 \\
\hline gS 71.5812 & 71 & 1 \\
\hline gS 71.5813 & 71 & 1 \\
\hline gS 71.5814 & 71 & 1 \\
\hline gS 71.5815 & 71 & 1 \\
\hline gS 71.5816 & 71 & 1 \\
\hline gS 71.5821 & 71 & 1 \\
\hline gS 71.5822 & 71 & 1 \\
\hline gS 71.5823 & 71 & 1 \\
\hline gS 71.5824 & 71 & 1 \\
\hline gS 71.5825 & 71 & 1 \\
\hline gS 71.5826 & 71 & 1 \\
\hline gS 71.5951 & 71 & 1 \\
\hline gS 71.5952 & 71 & 1 \\
\hline gS 71.5953 & 71 & 1 \\
\hline gS 71.5954 & 71 & 1 \\
\hline gS 71.5955 & 71 & 1 \\
\hline gS 71.5956 & 71 & 1 \\
\hline gS 71.7802 & 71 & 2 \\
\hline gS 71.7803 & 71 & 2 \\
\hline gS 71.7804 & 71 & 2 \\
\hline gS 71.7805 & 71 & 2 \\
\hline gS 71.7806 & 71 & 2 \\
\hline gS 71.7812 & 71 & 2 \\
\hline gS 71.7813 & 71 & 2 \\
\hline gS 71.7814 & 71 & 2 \\
\hline gS 71.7815 & 71 & 2 \\
\hline gS 71.7816 & 71 & 2 \\
\hline gS 71.7822 & 71 & 2 \\
\hline gS 71.7823 & 71 & 2 \\
\hline gS 71.7824 & 71 & 2 \\
\hline gS 71.7825 & 71 & 2 \\
\hline gS 71.7826 & 71 & 2 \\
\hline gS 71.7952 & 71 & 2 \\
\hline gS 71.7953 & 71 & 2 \\
\hline gS 71.7954 & 71 & 2 \\
\hline gS 71.7955 & 71 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline part number & section & page \\
\hline gS 71.7956 & 71 & 2 \\
\hline \multicolumn{3}{|l|}{72} \\
\hline gS 72.8011 & 72 & 2 \\
\hline gS 72.8012 & 72 & 2 \\
\hline gS 72.8013 & 72 & 2 \\
\hline gS 72.8014 & 72 & 2 \\
\hline gS 72.8015 & 72 & 2 \\
\hline gS 72.8021 & 72 & 2 \\
\hline gS 72.8022 & 72 & 2 \\
\hline gS 72.8023 & 72 & 2 \\
\hline gS 72.8024 & 72 & 2 \\
\hline gS 72.8025 & 72 & 2 \\
\hline \multicolumn{3}{|l|}{73} \\
\hline gS 73.2270 & 73 & 1 \\
\hline gS 73.2330 & 73 & 2 \\
\hline gS 73.2380 & 73 & 2 \\
\hline gS 73.2382 & 73 & 2 \\
\hline gS 73.2810 & 73 & 1 \\
\hline gS 73.2838 & 73 & 1 \\
\hline gS 73.2840 & 73 & 1 \\
\hline \multicolumn{3}{|l|}{74} \\
\hline gS 74.1000 & 74 & 1 \\
\hline gS 74.1010 & 74 & 1 \\
\hline gS 74.1040 & 74 & 1 \\
\hline gS 74.2015 & 74 & 2 \\
\hline gS 74.2109 & 74 & 2 \\
\hline gS 74.2180 & 74 & 3 \\
\hline gS 74.2190 & 74 & 3 \\
\hline gS 74.4140 & 74 & 1 \\
\hline gS 74.4148 & 74 & 2 \\
\hline gS 74.4160 & 74 & 2 \\
\hline gS 74.5070 & 74 & 3 \\
\hline gS 74.5071 & 74 & 3 \\
\hline gS 74.5100 & 74 & 3 \\
\hline gS 74.5200 & 74 & 4 \\
\hline gS 74.5210 & 74 & 4 \\
\hline gS 74.5220 & 74 & 4 \\
\hline gS 74.5230 & 74 & 4 \\
\hline gS 74.7800 & 74 & 4 \\
\hline gS 74.7920 & 74 & 4 \\
\hline gS 74.7940 & 74 & 4 \\
\hline gS 74.7980 & 74 & 4 \\
\hline gS 74.8000 & 74 & 4 \\
\hline gS 74.8400 & 74 & 4 \\
\hline \multicolumn{3}{|l|}{75} \\
\hline gS 75.3124 & 75-76 & 2 \\
\hline gS 75.3250 & 75-76 & 3 \\
\hline gS 75.3280 & 75-76 & 3 \\
\hline gS 75.9230 & 75-76 & 1 \\
\hline gS 75.9240 & 75-76 & 1 \\
\hline gS 75.9250 & 75-76 & 1 \\
\hline gS 75.9255 & 75-76 & 1 \\
\hline gS 75.9260 & 75-76 & 1 \\
\hline gS 75.9282 & 75-76 & 1 \\
\hline gS 75.9300 & 75-76 & 1 \\
\hline gS 75.9302 & 75-76 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 75.9307 & 75-76 & 1 & gS 77.5020 & 77 & 3 \\
\hline gS 75.9308 & 75-76 & 1 & gS 77.5040 & 77 & 3 \\
\hline gS 75.9309 & 75-76 & 1 & gS 77.5050 & 77 & 3 \\
\hline gS 75.9310 & 75-76 & 1 & gS 77.5055 & 77 & 3 \\
\hline gS 75.9311 & 75-76 & 1 & gS 77.5110 & 77 & 6 \\
\hline gS 75.9312 & 75-76 & 1 & gS 77.5120 & 77 & 6 \\
\hline gS 75.9313 & 75-76 & 1 & gS 77.5130 & 77 & 6 \\
\hline gS 75.9314 & 75-76 & 1 & gS 77.5140 & 77 & 6 \\
\hline gS 75.9315 & 75-76 & 1 & gS 77.5145 & 77 & 6 \\
\hline gS 75.9316 & 75-76 & 1 & gS 77.5146 & 77 & 6 \\
\hline gS 75.9317 & 75-76 & 1 & gS 77.5150 & 77 & 6 \\
\hline gS 75.9318 & 75-76 & 1 & gS 77.5152 & 77 & 6 \\
\hline gS 75.9320 & 75-76 & 1 & gS 77.5180 & 77 & 6 \\
\hline gS 75.9340 & 75-76 & 1 & gS 77.5182 & 77 & 6 \\
\hline gS 75.9360 & 75-76 & 1 & gS 77.5300 & 77 & 7 \\
\hline gS 75.9401 & 75-76 & 2 & gS 77.5301 & 77 & 7 \\
\hline gS 75.9402 & 75-76 & 2 & gS 77.5305 & 77 & 7 \\
\hline 76 & & & gS 77.5320 & 77 & 7 \\
\hline gS 76.0990 & 75-76 & 2 & gS 77.5325 & 77 & 7 \\
\hline gS 76.1000 & 75-76 & 2 & gS 77.5340 & 77 & 5 \\
\hline gS 76.1002 & 75-76 & 2 & gS 77.5400 & 77 & 7 \\
\hline gS 76.2614 & 75-76 & 2 & gS 77.5440 & 77 & 8 \\
\hline gS 76.2615 & 75-76 & 2 & gS 77.5442 & 77 & 8 \\
\hline gS 76.2616 & 75-76 & 2 & gS 77.5460 & 77 & 8 \\
\hline gS 76.2617 & 75-76 & 2 & gS 77.5462 & 77 & 8 \\
\hline gS 76.2618 & 75-76 & 2 & gS 77.5464 & 77 & 9 \\
\hline gS 76.2619 & 75-76 & 2 & gS 77.5470 & 77 & 9 \\
\hline gS 76.2620 & 75-76 & 2 & gS 77.5480 & 77 & 5 \\
\hline gS 76.2622 & 75-76 & 2 & gS 77.5482 & 77 & 5 \\
\hline gS 76.2624 & 75-76 & 2 & gS 77.5600 & 77 & 1 \\
\hline gS 76.2626 & 75-76 & 2 & gS 77.6001 & 77 & 2 \\
\hline 77 & & & gS 77.6003 & 77 & 2 \\
\hline gS 77.3708 & 77 & 1 & gS 77.6005 & 77 & 2 \\
\hline gS 77.3710 & 77 & 1 & gS 77.6007 & 77 & 2 \\
\hline gS 77.3880 & 77 & 1 & gS 77.6010 & 77 & 2 \\
\hline gS 77.3890 & 77 & 1 & gS 77.6105 & 77 & 4 \\
\hline gS 77.3900 & 77 & 1 & 78 & & \\
\hline gS 77.3910 & 77 & 1 & gS 78.1210 & 78-79 & 1 \\
\hline gS 77.3920 & 77 & 1 & gS 78.1220 & 78-79 & 1 \\
\hline gS 77.3940 & 77 & 1 & gS 78.1230 & 78-79 & 1 \\
\hline gS 77.4200 & 77 & 5 & gS 78.1240 & 78-79 & 1 \\
\hline gS 77.4202 & 77 & 5 & gS 78.1250 & 78-79 & 1 \\
\hline gS 77.4220 & 77 & 5 & gS 78.1300 & 78-79 & 1 \\
\hline gS 77.4222 & 77 & 5 & gS 78.1310 & 78-79 & 1 \\
\hline gS 77.4260 & 77 & 5 & gS 78.1320 & 78-79 & 1 \\
\hline gS 77.4262 & 77 & 5 & gS 78.1330 & 78-79 & 1 \\
\hline gS 77.4270 & 77 & 5 & gS 78.1340 & 78-79 & 1 \\
\hline gS 77.4400 & 77 & 5 & gS 78.2000 & 78-79 & 1 \\
\hline gS 77.4402 & 77 & 5 & gS 78.2010 & 78-79 & 1 \\
\hline gS 77.4410 & 77 & 2 & gS 78.2020 & 78-79 & 1 \\
\hline gS 77.4420 & 77 & 2 & gS 78.2030 & 78-79 & 1 \\
\hline gS 77.4430 & 77 & 2 & gS 78.2040 & 78-79 & 1 \\
\hline gS 77.4440 & 77 & 2 & gS 78.2050 & 78-79 & 1 \\
\hline gS 77.4480 & 77 & 4 & gS 78.2060 & 78-79 & 1 \\
\hline gS 77.4485 & 77 & 4 & gS 78.2070 & 78-79 & 1 \\
\hline gS 77.5010 & 77 & 3 & gS 78.2080 & 78-79 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & sectio & page & part number & section & pa \\
\hline gS 78.2090 & 78-79 & 1 & gS 78.3300 & 78-79 & 1 \\
\hline gS 78.2105 & 78-79 & 1 & gS 78.3310 & 78-79 & 1 \\
\hline gS 78.2110 & 78-79 & 1 & gS 78.3320 & 78-79 & 1 \\
\hline gS 78.2120 & 78-79 & 1 & gS 78.3330 & 78-79 & 1 \\
\hline gS 78.2130 & 78-79 & 1 & gS 78.3340 & 78-79 & 1 \\
\hline gS 78.2140 & 78-79 & 1 & gS 78.3341 & 78-79 & 1 \\
\hline gS 78.2200 & 78-79 & 1 & gS 78.3342 & 78-79 & 1 \\
\hline gS 78.2210 & 78-79 & 1 & gS 78.3344 & 78-79 & 1 \\
\hline gS 78.2220 & 78-79 & 1 & gS 78.3346 & 78-79 & 1 \\
\hline gS 78.2230 & 78-79 & 1 & gS 78.3348 & 78-79 & 1 \\
\hline gS 78.2240 & 78-79 & 1 & gS 78.3350 & 78-79 & 1 \\
\hline gS 78.2300 & 78-79 & 1 & gS 78.3360 & 78-79 & 1 \\
\hline gS 78.2310 & 78-79 & 1 & gS 78.3370 & 78-79 & 1 \\
\hline gS 78.2320 & 78-79 & 1 & gS 78.3380 & 78-79 & 1 \\
\hline gS 78.2330 & 78-79 & 1 & gS 78.3390 & 78-79 & 1 \\
\hline gS 78.2340 & 78-79 & 1 & gS 78.3400 & 78-79 & 1 \\
\hline gS 78.2500 & 78-79 & 1 & gS 78.3410 & 78-79 & 1 \\
\hline gS 78.2510 & 78-79 & 1 & gS 78.3420 & 78-79 & 1 \\
\hline gS 78.2520 & 78-79 & 1 & gS 78.3430 & 78-79 & 1 \\
\hline gS 78.2530 & 78-79 & 1 & gS 78.3440 & 78-79 & 1 \\
\hline gS 78.2540 & 78-79 & 1 & gS 78.3500 & 78-79 & 1 \\
\hline gS 78.2600 & 78-79 & 1 & gS 78.3510 & 78-79 & 1 \\
\hline gS 78.2610 & 78-79 & 1 & gS 78.3520 & 78-79 & 1 \\
\hline gS 78.2620 & 78-79 & 1 & gS 78.3525 & 78-79 & 1 \\
\hline gS 78.2630 & 78-79 & 1 & gS 78.3530 & 78-79 & 1 \\
\hline gS 78.2640 & 78-79 & 1 & gS 78.4030 & 78-79 & 1 \\
\hline gS 78.2700 & 78-79 & 1 & gS 78.4035 & 78-79 & 1 \\
\hline gS 78.2710 & 78-79 & 1 & gS 78.4080 & 78-79 & 1 \\
\hline gS 78.2720 & 78-79 & 1 & gS 78.4085 & 78-79 & 1 \\
\hline gS 78.2740 & 78-79 & 1 & gS 78.4090 & 78-79 & 1 \\
\hline gS 78.2750 & 78-79 & 1 & gS 78.4100 & 78-79 & 1 \\
\hline gS 78.2800 & 78-79 & 1 & gS 78.4110 & 78-79 & 1 \\
\hline gS 78.2810 & 78-79 & 1 & gS 78.4210 & 78-79 & 1 \\
\hline gS 78.2820 & 78-79 & 1 & gS 78.4220 & 78-79 & 1 \\
\hline gS 78.2840 & 78-79 & 1 & gS 78.4230 & 78-79 & 1 \\
\hline gS 78.2850 & 78-79 & 1 & gS 78.5500 & 78-79 & 2 \\
\hline gS 78.3000 & 78-79 & 1 & gS 78.5530 & 78-79 & 2 \\
\hline gS 78.3010 & 78-79 & 1 & gS 78.5560 & 78-79 & 2 \\
\hline gS 78.3020 & 78-79 & 1 & gS 78.5590 & 78-79 & 2 \\
\hline gS 78.3030 & 78-79 & 1 & gS 78.5620 & 78-79 & 2 \\
\hline gS 78.3040 & 78-79 & 1 & gS 78.5650 & 78-79 & 2 \\
\hline gS 78.3050 & 78-79 & 1 & gS 78.5680 & 78-79 & 2 \\
\hline gS 78.3060 & 78-79 & 1 & gS 78.5698 & 78-79 & 2 \\
\hline gS 78.3070 & 78-79 & 1 & gS 78.5720 & 78-79 & 2 \\
\hline gS 78.3080 & 78-79 & 1 & gS 78.5724 & 78-79 & 2 \\
\hline gS 78.3090 & 78-79 & 1 & gS 78.5820 & 78-79 & 2 \\
\hline gS 78.3100 & 78-79 & 1 & gS 78.5824 & 78-79 & 2 \\
\hline gS 78.3110 & 78-79 & 1 & gS 78.6100 & 78-79 & 2 \\
\hline gS 78.3120 & 78-79 & 1 & gS 78.6130 & 78-79 & 2 \\
\hline gS 78.3130 & 78-79 & 1 & gS 78.6160 & 78-79 & 2 \\
\hline gS 78.3140 & 78-79 & 1 & gS 78.6190 & 78-79 & 2 \\
\hline gS 78.3200 & 78-79 & 1 & gS 78.6220 & 78-79 & 2 \\
\hline gS 78.3210 & 78-79 & 1 & gS 78.6250 & 78-79 & 2 \\
\hline gS 78.3220 & 78-79 & 1 & gS 78.6280 & 78-79 & 2 \\
\hline gS 78.3230 & 78-79 & 1 & gS 78.6288 & 78-79 & 2 \\
\hline gS 78.3240 & 78-79 & 1 & gS 78.7000 & 78-79 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline t number & section & page & part numb & sect & page \\
\hline gS 78.7030 & 78-79 & 2 & gS 79.2012 & 78-79 & 3 \\
\hline gS 78.7060 & 78-79 & 2 & gS 79.2015 & 78-79 & 3 \\
\hline gS 78.7090 & 78-79 & 2 & gS 79.2106 & 78-79 & 3 \\
\hline gS 78.7120 & 78-79 & 2 & gS 79.2110 & 78-79 & 3 \\
\hline gS 78.7150 & 78-79 & 2 & gS 79.2112 & 78-79 & 3 \\
\hline gS 78.7180 & 78-79 & 2 & gS 79.2115 & 78-79 & 3 \\
\hline gS 78.7630 & 78-79 & 2 & gS 79.2116 & 78-79 & 3 \\
\hline gS 78.7660 & 78-79 & 2 & gS 79.2118 & 78-79 & 3 \\
\hline gS 78.7690 & 78-79 & 2 & gS 79.2306 & 78-79 & 3 \\
\hline gS 78.7720 & 78-79 & 2 & gS 79.2310 & 78-79 & 3 \\
\hline gS 78.7750 & 78-79 & 2 & gS 79.2312 & 78-79 & 3 \\
\hline gS 78.7780 & 78-79 & 2 & gS 79.2315 & 78-79 & 3 \\
\hline gS 78.7782 & 78-79 & 2 & gS 79.2316 & 78-79 & 3 \\
\hline gS 78.8000 & 78-79 & 2 & gS 79.2318 & 78-79 & 3 \\
\hline gS 78.8030 & 78-79 & 2 & 81 & & \\
\hline gS 78.8060 & 78-79 & 2 & gS 81.3214 & 81 & 2 \\
\hline gS 78.8090 & 78-79 & 2 & gS 81.3220 & 81 & 2 \\
\hline gS 78.8120 & 78-79 & 2 & gS 81.3225 & 81 & 2 \\
\hline gS 78.8150 & 78-79 & 2 & gS 81.3290 & 81 & 3 \\
\hline gS 78.8180 & 78-79 & 2 & gS 81.3315 & 81 & 3 \\
\hline gS 78.8300 & 78-79 & 2 & gS 81.3320 & 81 & 3 \\
\hline gS 78.8330 & 78-79 & 2 & gS 81.3330 & 81 & 3 \\
\hline gS 78.8360 & 78-79 & 2 & gS 81.3360 & 81 & 1 \\
\hline gS 78.8390 & 78-79 & 2 & gS 81.3370 & 81 & 1 \\
\hline gS 78.8420 & 78-79 & 2 & gS 81.3380 & 81 & 4 \\
\hline gS 78.8450 & 78-79 & 2 & gS 81.3450 & 81 & 4 \\
\hline gS 78.8480 & 78-79 & 2 & gS 81.3460 & 81 & 2 \\
\hline gS 78.8500 & 78-79 & 2 & gS 81.3462 & 81 & 4 \\
\hline gS 78.8530 & 78-79 & 2 & gS 81.3464 & 81 & 6 \\
\hline gS 78.8560 & 78-79 & 2 & gS 81.3466 & 81 & 6 \\
\hline gS 78.8590 & 78-79 & 2 & gS 81.3480 & 81 & 2 \\
\hline gS 78.8620 & 78-79 & 2 & gS 81.3490 & 81 & 6 \\
\hline gS 78.8650 & 78-79 & 2 & gS 81.3530 & 81 & 6 \\
\hline gS 78.8680 & 78-79 & 2 & gS 81.3540 & 81 & 5 \\
\hline gS 78.8700 & 78-79 & 2 & gS 81.3542 & 81 & 5 \\
\hline gS 78.8730 & 78-79 & 2 & gS 81.3546 & 81 & 5 \\
\hline gS 78.8760 & 78-79 & 2 & gS 81.3610 & 81 & 5 \\
\hline gS 78.8780 & 78-79 & 2 & gS 81.3620 & 81 & 7 \\
\hline gS 78.8820 & 78-79 & 2 & gS 81.3630 & 81 & 7 \\
\hline gS 78.8850 & 78-79 & 2 & gS 81.3716 & 81 & 7 \\
\hline gS 78.8880 & 78-79 & 2 & gS 81.3717 & 81 & 7 \\
\hline gS 78.9110 & 78-79 & 1 & gS 81.3720 & 81 & 7 \\
\hline gS 78.9112 & 78-79 & 1 & gS 81.6720 & 81 & 8 \\
\hline gS 78.9114 & 78-79 & 1 & gS 81.6730 & 81 & 8 \\
\hline gS 78.9116 & 78-79 & 1 & gS 81.6733 & 81 & 8 \\
\hline gS 78.9118 & 78-79 & 1 & gS 81.6740 & 81 & 8 \\
\hline 79 & & & gS 81.6780 & 81 & 5 \\
\hline gS 79.2002 & 78-79 & 3 & gS 81.7040 & 81 & 9 \\
\hline gS 79.2003 & 78-79 & 3 & gS 81.7050 & 81 & 9 \\
\hline gS 79.2004 & 78-79 & 3 & gS 81.7060 & 81 & 8 \\
\hline gS 79.2005 & 78-79 & 3 & gS 81.7070 & 81 & 10 \\
\hline gS 79.2006 & 78-79 & 3 & gS 81.7080 & 81 & 10 \\
\hline gS 79.2007 & 78-79 & 3 & gS 81.7095 & 81 & 10 \\
\hline gS 79.2008 & 78-79 & 3 & gS 81.7108 & 81 & 11 \\
\hline gS 79.2009 & 78-79 & 3 & gS 81.7110 & 81 & 11 \\
\hline gS 79.2010 & 78-79 & 3 & gS 81.7112 & 81 & 11 \\
\hline
\end{tabular}

\section*{120/18 - numeric index}
\begin{tabular}{|c|c|c|}
\hline part number & section & page \\
\hline gS 81.7128 & 81 & 12 \\
\hline gS 81.7130 & 81 & 12 \\
\hline gS 81.7132 & 81 & 12 \\
\hline gS 81.7138 & 81 & 12 \\
\hline gS 81.7140 & 81 & 12 \\
\hline gS 81.7142 & 81 & 12 \\
\hline gS 81.7144 & 81 & 12 \\
\hline gS 81.7145 & 81 & 12 \\
\hline gS 81.7146 & 81 & 12 \\
\hline gS 81.7150 & 81 & 13 \\
\hline gS 81.7152 & 81 & 13 \\
\hline gS 81.7154 & 81 & 13 \\
\hline gS 81.7156 & 81 & 13 \\
\hline gS 81.7158 & 81 & 13 \\
\hline gS 81.7160 & 81 & 13 \\
\hline gS 81.7162 & 81 & 13 \\
\hline gS 81.7164 & 81 & 13 \\
\hline gS 81.8510 & 81 & 1 \\
\hline gS 81.8520 & 81 & 1 \\
\hline gS 81.8530 & 81 & 1 \\
\hline gS 81.8540 & 81 & 1 \\
\hline \multicolumn{3}{|l|}{82} \\
\hline gS 82.0020 & 82 & 1 \\
\hline gS 82.0030 & 82 & 1 \\
\hline gS 82.0050 & 82 & 3 \\
\hline gS 82.0100 & 82 & 2 \\
\hline gS 82.0172 & 82 & 5 \\
\hline gS 82.0174 & 82 & 5 \\
\hline gS 82.0176 & 82 & 5 \\
\hline gS 82.0180 & 82 & 6 \\
\hline gS 82.0182 & 82 & 6 \\
\hline gS 82.0183 & 82 & 6 \\
\hline gS 82.0184 & 82 & 6 \\
\hline gS 82.0240 & 82 & 3 \\
\hline gS 82.0280 & 82 & 9 \\
\hline gS 82.0282 & 82 & 9 \\
\hline gS 82.0290 & 82 & 9 \\
\hline gS 82.0292 & 82 & 9 \\
\hline gS 82.0296 & 82 & 7 \\
\hline gS 82.0298 & 82 & 8 \\
\hline gS 82.0300 & 82 & 8 \\
\hline gS 82.0302 & 82 & 8 \\
\hline gS 82.0303 & 82 & 8 \\
\hline gS 82.0304 & 82 & 8 \\
\hline gS 82.0315 & 82 & 8 \\
\hline gS 82.0970 & 82 & 7 \\
\hline gS 82.0980 & 82 & 7 \\
\hline gS 82.1014 & 82 & 4 \\
\hline gS 82.1020 & 82 & 4 \\
\hline gS 82.1050 & 82 & 3 \\
\hline gS 82.2016 & 82 & 4 \\
\hline gS 82.4100 & 82 & 20 \\
\hline gS 82.4150 & 82 & 20 \\
\hline gS 82.4200 & 82 & 18 \\
\hline gS 82.4220 & 82 & 16 \\
\hline gS 82.4225 & 82 & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline be & section & page \\
\hline gS 82.4230 & 82 & 16 \\
\hline gS 82.4231 & 82 & 16 \\
\hline gS 82.4232 & 82 & 16 \\
\hline gS 82.4235 & 82 & 16 \\
\hline gS 82.4236 & 82 & 16 \\
\hline gS 82.4237 & 82 & 16 \\
\hline gS 82.4240 & 82 & 17 \\
\hline gS 82.4250 & 82 & 17 \\
\hline gS 82.4255 & 82 & 18 \\
\hline gS 82.4260 & 82 & 17 \\
\hline gS 82.4263 & 82 & 17 \\
\hline gS 82.4264 & 82 & 17 \\
\hline gS 82.4270 & 82 & 18 \\
\hline gS 82.4275 & 82 & 19 \\
\hline gS 82.4278 & 82 & 24 \\
\hline gS 82.4280 & 82 & 24 \\
\hline gS 82.4281 & 82 & 24 \\
\hline gS 82.4282 & 82 & 24 \\
\hline gS 82.4302 & 82 & 24 \\
\hline gS 82.4304 & 82 & 24 \\
\hline gS 82.4306 & 82 & 24 \\
\hline gS 82.4731 & 82 & 2 \\
\hline gS 82.4732 & 82 & 2 \\
\hline gS 82.4733 & 82 & 2 \\
\hline gS 82.4734 & 82 & 2 \\
\hline gS 82.4735 & 82 & 2 \\
\hline gS 82.4736 & 82 & 2 \\
\hline gS 82.4737 & 82 & 2 \\
\hline gS 82.4740 & 82 & 1 \\
\hline gS 82.4741 & 82 & 1 \\
\hline gS 82.4750 & 82 & 21 \\
\hline gS 82.4755 & 82 & 5 \\
\hline gS 82.4760 & 82 & 3 \\
\hline gS 82.4790 & 82 & 20 \\
\hline gS 82.4800 & 82 & 22 \\
\hline gS 82.4820 & 82 & 22 \\
\hline gS 82.4840 & 82 & 22 \\
\hline gS 82.4870 & 82 & 23 \\
\hline gS 82.4890 & 82 & 23 \\
\hline gS 82.4918 & 82 & 21 \\
\hline gS 82.4930 & 82 & 21 \\
\hline gS 82.4940 & 82 & 21 \\
\hline gS 82.4941 & 82 & 22 \\
\hline gS 82.4942 & 82 & 22 \\
\hline gS 82.4960 & 82 & 22 \\
\hline gS 82.4962 & 82 & 22 \\
\hline gS 82.4964 & 82 & 22 \\
\hline gS 82.4966 & 82 & 22 \\
\hline gS 82.4970 & 82 & 23 \\
\hline gS 82.7551 & 82 & 13 \\
\hline gS 82.7552 & 82 & 13 \\
\hline gS 82.7553 & 82 & 13 \\
\hline gS 82.7555 & 82 & 13 \\
\hline gS 82.7556 & 82 & 13 \\
\hline gS 82.7557 & 82 & 13 \\
\hline gS 82.7558 & 82 & 13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 82.7630 & 82 & 10 & gS 83.7330 & 83 & 12 \\
\hline gS 82.7640 & 82 & 10 & gS 83.7331 & 83 & 12 \\
\hline gS 82.7690 & 82 & 11 & gS 83.7440 & 83 & 2 \\
\hline gS 82.7710 & 82 & 7 & gS 83.7470 & 83 & 6 \\
\hline gS 82.7712 & 82 & 7 & gS 83.7510 & 83 & 6 \\
\hline gS 82.7720 & 82 & 7 & gS 83.7512 & 83 & 4 \\
\hline gS 82.7722 & 82 & 7 & gS 83.7513 & 83 & 6 \\
\hline gS 82.7740 & 82 & 12 & gS 83.7514 & 83 & 7 \\
\hline gS 82.7745 & 82 & 12 & gS 83.7900 & 83 & 8 \\
\hline gS 82.7750 & 82 & 12 & gS 83.7901 & 83 & 8 \\
\hline gS 82.7760 & 82 & 12 & gS 83.7902 & 83 & 8 \\
\hline gS 82.7840 & 82 & 12 & gS 83.8400 & 83 & 5 \\
\hline gS 82.7845 & 82 & 12 & gS 83.8401 & 83 & 5 \\
\hline gS 82.7850 & 82 & 12 & gS 83.8450 & 83 & 5 \\
\hline gS 82.7855 & 82 & 12 & gS 83.8451 & 83 & 5 \\
\hline gS 82.7860 & 82 & 12 & gS 83.8800 & 83 & 9 \\
\hline gS 82.7950 & 82 & 13 & gS 83.8880 & 83 & 8 \\
\hline gS 82.7955 & 82 & 13 & gS 83.8882 & 83 & 8 \\
\hline gS 82.7960 & 82 & 13 & gS 83.8900 & 83 & 9 \\
\hline gS 82.7970 & 82 & 15 & gS 83.9000 & 83 & 10 \\
\hline gS 82.7982 & 82 & 14 & gS 83.9135 & 83 & 10 \\
\hline gS 82.7985 & 82 & 14 & gS 83.9200 & 83 & 11 \\
\hline gS 82.7987 & 82 & 14 & gS 83.9905 & 83 & 16 \\
\hline gS 82.7991 & 82 & 15 & gS 83.9950 & 83 & 16 \\
\hline gS 82.7992 & 82 & 15 & 84 & & \\
\hline gS 82.7993 & 82 & 15 & gS 84.1000 & 84 & 1 \\
\hline gS 82.7995 & 82 & 14 & gS 84.1020 & 84 & 1 \\
\hline 83 & & & gS 84.1021 & 84 & 1 \\
\hline gS 83.2680 & 83 & 1 & gS 84.1022 & 84 & 1 \\
\hline gS 83.2700 & 83 & 1 & gS 84.1032 & 84 & 1 \\
\hline gS 83.2920 & 83 & 1 & gS 84.1042 & 84 & 1 \\
\hline gS 83.2940 & 83 & 1 & gS 84.1052 & 84 & 1 \\
\hline gS 83.2945 & 83 & 1 & gS 84.2000 & 84 & 3 \\
\hline gS 83.2950 & 83 & 1 & 86 & & \\
\hline gS 83.2980 & 83 & 1 & gS 86.0035 & 86-87 & 9 \\
\hline gS 83.3000 & 83 & 1 & gS 86.0040 & 86-87 & 9 \\
\hline gS 83.4016 & 83 & 1 & gS 86.0045 & 86-87 & 9 \\
\hline gS 83.7220 & 83 & 2 & gS 86.0050 & 86-87 & 9 \\
\hline gS 83.7221 & 83 & 2 & gS 86.1002 & 86-87 & 13 \\
\hline gS 83.7222 & 83 & 2 & gS 86.1004 & 86-87 & 8 \\
\hline gS 83.7223 & 83 & 3 & gS 86.1006 & 86-87 & 8 \\
\hline gS 83.7226 & 83 & 3 & gS 86.1010 & 86-87 & 8 \\
\hline gS 83.7228 & 83 & 3 & gS 86.1020 & 86-87 & 8 \\
\hline gS 83.7230 & 83 & 3 & gS 86.1200 & 86-87 & 8 \\
\hline gS 83.7232 & 83 & 4 & gS 86.1201 & 86-87 & 8 \\
\hline gS 83.7236 & 83 & 7 & gS 86.1202 & 86-87 & 8 \\
\hline gS 83.7240 & 83 & 7 & gS 86.1203 & 86-87 & 8 \\
\hline gS 83.7250 & 83 & 7 & gS 86.1204 & 86-87 & 8 \\
\hline gS 83.7260 & 83 & 4 & gS 86.1206 & 86-87 & 8 \\
\hline gS 83.7261 & 83 & 13 & gS 86.1208 & 86-87 & 8 \\
\hline gS 83.7262 & 83 & 13 & gS 86.1209 & 86-87 & 8 \\
\hline gS 83.7270 & 83 & 14 & gS 86.1212 & 86-87 & 8 \\
\hline gS 83.7280 & 83 & 15 & gS 86.1216 & 86-87 & 8 \\
\hline gS 83.7290 & 83 & 15 & gS 86.1220 & 86-87 & 8 \\
\hline gS 83.7310 & 83 & 4 & gS 86.1502 & 86-87 & 7 \\
\hline gS 83.7320 & 83 & 11 & gS 86.1504 & 86-87 & 7 \\
\hline
\end{tabular}
numeric index - 120/19
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 86.1505 & 86-87 & 7 & gS 86.2945 & 86-87 & 4 \\
\hline gS 86.1506 & 86-87 & 7 & gS 86.4371 & 86-87 & 13 \\
\hline gS 86.1510 & 86-87 & 7 & gS 86.4373 & 86-87 & 13 \\
\hline gS 86.1515 & 86-87 & 7 & gS 86.4375 & 86-87 & 13 \\
\hline gS 86.1519 & 86-87 & 7 & gS 86.4380 & 86-87 & 13 \\
\hline gS 86.1521 & 86-87 & 7 & gS 86.4395 & 86-87 & 10 \\
\hline gS 86.1604 & 86-87 & 7 & gS 86.4400 & 86-87 & 10 \\
\hline gS 86.1605 & 86-87 & 7 & gS 86.4410 & 86-87 & 11 \\
\hline gS 86.1606 & 86-87 & 7 & gS 86.4420 & 86-87 & 9 \\
\hline gS 86.1607 & 86-87 & 7 & gS 86.4490 & 86-87 & 10 \\
\hline gS 86.1608 & 86-87 & 7 & gS 86.4495 & 86-87 & 11 \\
\hline gS 86.1609 & 86-87 & 7 & gS 86.4500 & 86-87 & 10 \\
\hline gS 86.1610 & 86-87 & 7 & gS 86.4520 & 86-87 & 10 \\
\hline gS 86.1715 & 86-87 & 7 & gS 86.4530 & 86-87 & 10 \\
\hline gS 86.1720 & 86-87 & 7 & gS 86.4540 & 86-87 & 9 \\
\hline gS 86.1725 & 86-87 & 7 & gS 86.4550 & 86-87 & 9 \\
\hline gS 86.1915 & 86-87 & 7 & gS 86.4560 & 86-87 & 9 \\
\hline gS 86.1925 & 86-87 & 7 & gS 86.4580 & 86-87 & 9 \\
\hline gS 86.1930 & 86-87 & 7 & gS 86.4585 & 86-87 & 10 \\
\hline gS 86.1935 & 86-87 & 7 & gS 86.4590 & 86-87 & 10 \\
\hline gS 86.1940 & 86-87 & 7 & gS 86.4595 & 86-87 & 10 \\
\hline gS 86.1945 & 86-87 & 7 & gS 86.6104 & 86-87 & 14 \\
\hline gS 86.2330 & 86-87 & 12 & gS 86.6108 & 86-87 & 14 \\
\hline gS 86.2405 & 86-87 & 12 & gS 86.6110 & 86-87 & 14 \\
\hline gS 86.2410 & 86-87 & 12 & gS 86.6155 & 86-87 & 14 \\
\hline gS 86.2413 & 86-87 & 12 & gS 86.7220 & 86-87 & 13 \\
\hline gS 86.2415 & 86-87 & 12 & gS 86.8211 & 86-87 & 5 \\
\hline gS 86.2417 & 86-87 & 12 & gS 86.8215 & 86-87 & 5 \\
\hline gS 86.2418 & 86-87 & 12 & gS 86.8216 & 86-87 & 5 \\
\hline gS 86.2420 & 86-87 & 12 & gS 86.8220 & 86-87 & 5 \\
\hline gS 86.2425 & 86-87 & 12 & gS 86.8221 & 86-87 & 5 \\
\hline gS 86.2430 & 86-87 & 12 & gS 86.8222 & 86-87 & 5 \\
\hline gS 86.2500 & 86-87 & 2 & gS 86.8224 & 86-87 & 5 \\
\hline gS 86.2502 & 86-87 & 2 & gS 86.8225 & 86-87 & 5 \\
\hline gS 86.2503 & 86-87 & 2 & gS 86.8226 & 86-87 & 5 \\
\hline gS 86.2504 & 86-87 & 2 & gS 86.8227 & 86-87 & 5 \\
\hline gS 86.2505 & 86-87 & 2 & gS 86.8228 & 86-87 & 5 \\
\hline gS 86.2506 & 86-87 & 2 & gS 86.8232 & 86-87 & 5 \\
\hline gS 86.2507 & 86-87 & 4 & gS 86.8233 & 86-87 & 5 \\
\hline gS 86.2510 & 86-87 & 4 & gS 86.8235 & 86-87 & 5 \\
\hline gS 86.2515 & 86-87 & 4 & gS 86.8236 & 86-87 & 5 \\
\hline gS 86.2545 & 86-87 & 1 & gS 86.8240 & 86-87 & 5 \\
\hline gS 86.2550 & 86-87 & 1 & gS 86.8245 & 86-87 & 5 \\
\hline gS 86.2558 & 86-87 & 1 & gS 86.8246 & 86-87 & 5 \\
\hline gS 86.2560 & 86-87 & 1 & gS 86.8410 & 86-87 & 6 \\
\hline gS 86.2580 & 86-87 & 3 & gS 86.8412 & 86-87 & 6 \\
\hline gS 86.2582 & 86-87 & 3 & gS 86.8415 & 86-87 & 6 \\
\hline gS 86.2584 & 86-87 & 3 & gS 86.8420 & 86-87 & 6 \\
\hline gS 86.2586 & 86-87 & 3 & gS 86.8424 & 86-87 & 6 \\
\hline gS 86.2635 & 86-87 & 3 & gS 86.8425 & 86-87 & 6 \\
\hline gS 86.2645 & 86-87 & 3 & gS 86.8427 & 86-87 & 6 \\
\hline gS 86.2675 & 86-87 & 4 & gS 86.8432 & 86-87 & 6 \\
\hline gS 86.2685 & 86-87 & 4 & gS 86.8435 & 86-87 & 6 \\
\hline gS 86.2720 & 86-87 & 3 & gS 86.8440 & 86-87 & 6 \\
\hline gS 86.2735 & 86-87 & 3 & gS 86.8445 & 86-87 & 6 \\
\hline gS 86.2745 & 86-87 & 3 & gS 86.8448 & 86-87 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & section & page & part number & section & page \\
\hline gS 86.8450 & 86-87 & 6 & gS 98.2406 & 98-99 & 3 \\
\hline gS 86.8460 & 86-87 & 6 & gS 98.2408 & 98-99 & 3 \\
\hline gS 86.8532 & 86-87 & 6 & gS 98.2410 & 98-99 & 3 \\
\hline gS 86.8535 & 86-87 & 6 & gS 98.2412 & 98-99 & 3 \\
\hline gS 86.8545 & 86-87 & 6 & gS 98.2515 & 98-99 & 4 \\
\hline gS 86.8560 & 86-87 & 6 & gS 98.2530 & 98-99 & 4 \\
\hline gS 86.8620 & 86-87 & 6 & gS 98.4050 & 98-99 & 7 \\
\hline gS 86.8627 & 86-87 & 6 & gS 98.5206 & 98-99 & 2 \\
\hline gS 86.8635 & 86-87 & 6 & gS 98.5210 & 98-99 & 2 \\
\hline gS 86.8640 & 86-87 & 6 & gS 98.5230 & 98-99 & 2 \\
\hline gS 86.8645 & 86-87 & 6 & gS 98.5240 & 98-99 & 2 \\
\hline gS 86.8725 & 86-87 & 5 & gS 98.5245 & 98-99 & 2 \\
\hline gS 86.8732 & 86-87 & 5 & gS 98.5250 & 98-99 & 2 \\
\hline gS 86.8765 & 86-87 & 5 & gS 98.5260 & 98-99 & 2 \\
\hline gS 86.8827 & 86-87 & 6 & gS 98.5404 & 98-99 & 5 \\
\hline gS 86.8832 & 86-87 & 6 & gS 98.5409 & 98-99 & 6 \\
\hline gS 86.8835 & 86-87 & 6 & gS 98.6020 & 98-99 & 9 \\
\hline gS 86.8845 & 86-87 & 6 & gS 98.6040 & 98-99 & 9 \\
\hline gS 86.8945 & 86-87 & 6 & gS 98.8127 & 98-99 & 8 \\
\hline gS 86.9914 & 86-87 & 11 & gS 98.8178 & 98-99 & 7 \\
\hline 87 & & & 99 & & \\
\hline gS 87.0012 & 86-87 & 15 & gS 99.0100 & 98-99 & 4 \\
\hline gS 87.0014 & 86-87 & 15 & gS 99.0102 & 98-99 & 4 \\
\hline gS 87.0020 & 86-87 & 16 & gS 99.0104 & 98-99 & 4 \\
\hline gS 87.0022 & 86-87 & 16 & gS 99.1011 & 98-99 & 4 \\
\hline gS 87.0200 & 86-87 & 15 & gS 99.1016 & 98-99 & 4 \\
\hline gS 87.2006 & 86-87 & 16 & gS 99.1025 & 98-99 & 4 \\
\hline
\end{tabular}
notes
gSource

\section*{gSource.}
gSource, LLC 19 Bland Street Emerson, NJ 07630
USA
\(P(800) 978-1119\)
(201) 599-2277

F (201) 599-3306
E emailggSource.com www.gSource com
* gSource 2017

Frithed in USA
D13017```

